Диагональное сечение правильной четырехугольной пирамиды

Диагональное сечение правильной четырехугольной пирамиды

Вопрос:

Какова площадь диагонального сечения правильной усечённой четырёхугольной пирамиды?

Ответы:

Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно этой диагонали. Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно плоскости большего основания. Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно к плоскости большего основания. Определить объем каждой части, если в усеченной пирамиде высота равна 4 см, а стороны оснований 2 см и 5 см Сделать чертеж. Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к ней.

Какова площадь диагонального сечения правильной усечённой четырёхугольной пирамиды?

Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. Из правильной четырехугольной усеченной пирамиды вырезана часть ее в виде двух пирамид, имеющих общую вершину в точке пересечения ее диагоналей, а основаниями — ее основания. Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения, перпендикулярного к основанию. Высота правильной четырехугольной усеченной пирамиды равна Я, боковое ребро и диагональ пирамиды наклонены к плоскости ее основания под углами и и р Найти ее боковую поверхность. Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований равны 10 и 2 см. Найдите боковое ребро пирамиды. Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований 10 см и 2 см. Найти боковое ребро пирамиды.

Площадь — диагональное сечение

Cтраница 2

В прямоугольном параллелепипеде стороны основания относятся, как k: n, а площадь диагонального сечения, перпендикулярного основанию, равна S.  

Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения.  

Высота правильной усеченной четырехугольной пирамиды равна 4 см, диагональ равна 5 см. Найти площадь диагонального сечения, перпендикулярного к основаниям.  

В правильной четырехугольной пирамиде сторона основания равна 14 см, а длина бокового ребра 10 см. Определить площадь диагонального сечения.  

В правильной четырехугольной пирамиде длина стороны основания равна 14 см, а длина бокового ребра — 10 см. Найдите площадь диагонального сечения.  

Графики функции L ( a ] для различных значений параметра ГП2 представлены сплошными линиями на рис. 8.6. Штриховыми линиями на рисунке показаны зависимости площади S диагонального сечения впадины изношенной поверхности от параметра а при различных значениях гл.  

Длины сторон основания правильной четырехугольной усеченной пирамиды равны 10 и 2 см, длина бокового ребра равна 9 см. Найдите: а) высоту этой усеченной пирамиды; б) площадь сечения, проходящего через середины ребер данной усеченной пирамиды; в) площадь диагонального сечения.  

Основанием прямой призмы служит ромб. Площади диагональных сечений этой призмы равны Р и Q.  

Основанием прямого параллелепипеда служит ромб. Площади диагональных сечений, перпендикулярных основаниям, равны М и N.  

Основанием прямого параллелепипеда служит ромб. Площади диагональных сечений, перпендикулярных к основаниям, равны М и N.  

Основанием прямой призмы служит ромб.

Совет 1: Как найти площадь диагонального сечения

Площади диагональных сечений этой призмы равны Р и Q.  

Высота пирамиды проходит через вершину острого угла ромба. Площадь диагонального сечения, проведенного через меньшую диагональ, равна Q.  

Основанием прямой призмы служит ромб. Площади диагональных сечений этой призмы равны Р и Q.  

Основанием прямого параллелепипеда служит ромб, площадь которого равна Q. Площади диагональных сечений равны Si и S.  

Страницы:      1    2    3

Вопрос:

Какова площадь диагонального сечения правильной усечённой четырёхугольной пирамиды?

Ответы:

Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно этой диагонали. Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно плоскости большего основания. Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно к плоскости большего основания. Определить объем каждой части, если в усеченной пирамиде высота равна 4 см, а стороны оснований 2 см и 5 см Сделать чертеж. Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к ней. Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. Из правильной четырехугольной усеченной пирамиды вырезана часть ее в виде двух пирамид, имеющих общую вершину в точке пересечения ее диагоналей, а основаниями — ее основания. Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения, перпендикулярного к основанию. Высота правильной четырехугольной усеченной пирамиды равна Я, боковое ребро и диагональ пирамиды наклонены к плоскости ее основания под углами и и р Найти ее боковую поверхность. Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований равны 10 и 2 см. Найдите боковое ребро пирамиды.

Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований 10 см и 2 см. Найти боковое ребро пирамиды.

Вычисление длины ребра куба или площади диагонального сечения. П2

Заголовок:

Вычисление длины ребра куба или площади диагонального сечения. П2

Язык представления информации: Русский
Описание: Данный модуль представляет собой задание повышенной сложности, состоящее из четырех уровней. Для прохождения каждого уровня ученику необходимо два раза подряд правильно выполнить задание, при этом не использовать решение с ответом.

Задание направлено на отработку умений учащихся вычислять длину ребра куба или площадь диагонального сечения. При прохождении уровней Пользователю предоставляется возможность использовать подсказки. Все задания данного учебного модуля параметризированы. Это позволяет формировать индивидуальные задания для каждого учащегося.

Ключевые слова: сечение многогранников плоскостью, диагональное, сечение, площадь сечения, методы построения сечений
Статус: завершенный вариант (готовый, окончательный)
Издатель: ООО «Кирилл и Мефодий»Адрес —  Россия, 127549, Москва, 8 стр.1, ул. Пришвина2006 г.
Тип используемых данных: text/plain, text/html, image/jpeg
Объем цифрового ИР: 5000 байт
Тип ИР сферы образования: практический модуль
Категория пользователей: обучаемый, преподаватель
Признак платности: бесплатный ИР
Признак наличия ограничений по использованию: нет ограничений
Правообладатель(и): ООО «Кирилл и Мефодий»Адрес —  Россия, 127549, Москва, 8 стр.1, ул. Пришвина
Права доступа: бесплатный доступ
Дисциплины: Сечение многогранников плоскостью. Методы построения сечений
Уровни и ступени образования:
Целевое назначение:
Тип ресурса: Открытая образовательная модульная мультимедийная система (ОМС)
Классы общеобразовательной школы: 11
Уровень образовательного стандарта:
Образовательная направленность: Базовый вариант учебной программы
Характер обучения:

Еще материалы по теме: Вычисление длины ребра куба или площади диагонального сечения. П2

Загрузить модуль (Размер 891 КБайт)
Загрузить метаданные

Внимание! Для воспроизведения электронных учебных модулей (ЭУМ) необходимо установить на компьютере пользователя специальное программное обеспечение – проигрыватель ресурсов.

Установить проигрыватель ресурсов версии 1.0.0.91 (8216 Кб) для ОС Windows

Пирамида и усеченная пирамида

Как можно построить пирамиду? На плоскости р построим какой-либо многоугольник, например пятиугольник ABCDE. Вне плоскости р возьмем точку S. Соединив точку S отрезками со всеми точками многоугольника, получим пирамиду SABCDE (рис.).

Точка S называется вершиной, а многоугольник ABCDE — основанием этой пирамиды. Таким образом, пирамида с вершиной S и основанием ABCDE — это объединение всех отрезков , где М ∈ ABCDE.

Треугольники SAB, SBC, SCD, SDE, SEA называются боковыми гранями пирамиды, общие стороны боковых граней SA, SB, SC, SD, SE — боковыми ребрами.

Пирамиды называются треугольными, четырехугольными, п-угольными в зависимости от числа сторон основания. На рис. даны изображения треугольной, четырехугольной и шестиугольной пирамид.

Плоскость, проходящая через вершину пирамиды и диагональ основания, называется диагональной, а полученное сечение — диагональным. На рис. 186 одно из диагональных сечений шестиугольной пирамиды заштриховано.

Отрезок перпендикуляра, проведенного через вершину пирамиды к плоскости ее основания, называется высотой пирамиды (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Пирамида называется правильной, если основание пирамиды—правильный многоугольник и вершина пирамиды проектируется в его центр.

Все боковые грани правильной пирамиды — конгруэнтные равнобедренные треугольники. У правильной пирамиды все боковые ребра конгруэнтны.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды. Все апофемы правильной пирамиды конгруэнтны.

Если обозначить сторону основания через а, а апофему через h, то площадь одной боковой грани пирамиды равна 1/2 ah .

Сумма площадей всех боковых граней пирамиды называется площадью боковой поверхности пирамиды и обозначается через Sбок.

Так как боковая поверхность правильной пирамиды состоит из n конгруэнтных граней, то

Sбок. = 1/2 ahn = Ph/2,

где Р — периметр основания пирамиды. Следовательно,

Sбок. = Ph/2

т.

е. площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Площадь полной поверхности пирамиды вычисляется по формуле

S = Socн. + Sбок..

Объем пирамиды равен одной трети произведения площади ее основания Socн. на высоту Н:

V = 1/3 Socн. Н.

Вывод этой и некоторых других формул будет дан в одной из последующих глав.

Построим теперь пирамиду другим способом. Пусть дан многогранный угол, например, пятигранный, с вершиной S (рис.).

Проведем плоскость р так, чтобы она пересекала все ребра данного многогранного угла в разных точках А, В, С, D, Е (рис.). Тогда пирамиду SABCDE можно рассматривать как пересечение многогранного угла и полупространства с границей р, в котором лежит вершина S.

Очевидно, что число всех граней пирамиды может быть произвольным, но не меньшим четырех. При пересечении трехгранного угла плоскостью получается треугольная пирамида, у которой четыре грани. Любую треугольную пирамиду иногда называют тетраэдром, что означает четырехгранник.

Усеченную пирамиду можно получить, если пирамиду пересечь плоскостью, параллельной плоскости основания.

На рис. дано изображение четырехугольной усеченной пирамиды.

Усеченные пирамиды также называются треугольными, четырехугольными, n-угольными в зависимости от числа сторон основания. Из построения усеченной пирамиды следует, что она имеет два основания: верхнее и нижнее. Основания усеченной пирамиды — два многоугольника, стороны которых попарно параллельны. Боковые грани усеченной пирамиды — трапеции.

Высотой усеченной пирамиды называется отрезок перпендикуляра, проведенного из любой точки верхнего основания к плоскости нижнего.

Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и плоскостью сечения, параллельной основанию. Высота боковой грани правильной усеченной пирамиды (трапеции) называется апофемой.

Можно доказать, что у правильной усеченной пирамиды боковые ребра конгруэнтны, все боковые грани конгруэнтны, все апофемы конгруэнтны.

Если в правильной усеченной n-угольной пирамиде через а и bn обозначить длины сторон верхнего и нижнего оснований, а через h — длину апофемы, то площадь каждой боковой грани пирамиды равна

1/2( а + bn ) h

Сумма площадей всех боковых граней пирамиды называется площадью ее боковой поверхности и обозначается Sбок. . Очевидно, что для правильной усеченной n-угольной пирамиды

Sбок. = n • 1/2( а + bn ) h .

Так как па = Р и nbn= Р1 — периметры оснований усеченной пирамиды, то

Sбок. = 1/2 (Р + Р1) h ,

т. е. площадь боковой поверхности правильной усеченной пирамиды равна половине произведения суммы периметров ее оснований на апофему.

Сечение, параллельное основанию пирамиды

Теорема.Если пирамиду пересечь плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделятся на пропорциональные части;

2) в сечении получится многоугольник, подобный основанию;

3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Теорему достаточно доказать для треугольной пирамиды.

Так как параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, то (АВ) || (А1В1), (BС) ||( В1C1), (AС) || (A1С1) (рис.).

Параллельные прямые рассекают стороны угла на пропорциональные части, и поэтому

$$ \frac{\left|{SA}\right|}{\left|{SA_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Следовательно, ΔSAB ~ ΔSA1B1 и

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|} $$

ΔSBC ~ ΔSB1C1 и

$$ \frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Таким образом,

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{AC}\right|}{\left|{A_{1}C_1}\right|} $$

Соответственные углы треугольников ABC и A1B1C1 конгруэнтны, как углы с параллельными и одинаково направленными сторонами. Поэтому

ΔABC ~ ΔA1B1C1

Площади подобных треугольников относятся, как квадраты соответствующих сторон:

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{AB}\right|^2}{\left|{A_{1}B_1}\right|^2} $$

но

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SH}\right|}{\left|{SH_1}\right|} $$

Следовательно,

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{SH}\right|^2}{\left|{SH_1}\right|^2} $$

Теорема.Если две пирамиды с равными высотами рассечены на одинаковом расстоянии от вершины плоскостями, параллельными основаниям, то площади сечений пропорциональны площадям оснований.

Пусть (черт. 84) В и В1— площади оснований двух пирамид, H — высота каждой из них, b и b1 — площади сечений плоскостями, параллельными основаниям и удалёнными от вершин на одно и то же расстояние h.

Согласно предыдущей теореме мы будем иметь:

$$ \frac{b}{B}=\frac{h^2}{H^2}\: и \: \frac{b_1}{B_1}=\frac{h^2}{H^2} $$
откуда
$$ \frac{b}{B}=\frac{b_1}{B_1}\:  или \: \frac{b}{b_1}=\frac{B}{B_1} $$

Следствие. Если В = В1, то и b = b1 , т. е. если у двух пирамид с равными высотами основания равновелики, то равновелики и сечения, равноотстоящие от вершины.

admin