Как найти фазу колебаний формула

Как найти фазу колебаний формула

Начальная фаза колебаний

Определение

Начальная фаза колебаний — это параметр, который совместно с амплитудой колебаний определяет начальное состояние колебательной системы. Величину начальной фазы задают в начальных условиях, то есть при $t=0$ c.

Рассмотрим гармонические колебания некоторого параметра $\xi $. Гармонические колебания описываются уравнением:

\

где $A={\xi }_{max}$ — амплитуда колебаний; ${\omega }_0$ — циклическая (круговая) частота колебаний. Параметр $\xi $ лежит в пределах $-A\le \xi \le $+A.

Определение фазы колебаний

Весь аргумент периодической функции (в данном случае косинуса:$\ ({\omega }_0t+\varphi )$), описывающей колебательный процесс, называют фазой колебаний. Величина фазы колебаний в начальный момент времени, то есть при $t=0$, ($\varphi $)- носит название начальной фазы. Устоявшегося обозначения фазы нет, у нас начальная фаза обозначена $\varphi $. Иногда, чтобы подчеркнуть, что начальная фаза относится к моменту времени $t=0$ к букве, обозначающей начальную фазу, добавляют индекс 0, пишут, например, ${\varphi }_0.$

Единицей измерения начальной фазы является единица измерения угла — радиан (рад) или градус.

Начальная фаза колебаний и способ возбуждения колебаний

Допустим, что при $t=0$ смещение системы от положения равновесия равно ${\xi }_0$, а начальная скорость ${\dot{\xi }}_0$. Тогда уравнение (1) принимает вид:

\ \

Возведем в квадрат оба уравнения (2) и сложим их:

\

Из выражения (4) имеем:

\

Разделим уравнение (3) на (2), получим:

\

Выражения (5) и (6) показывают, что начальная фаза и амплитуда зависят от начальных условий колебаний. Это значит, что амплитуда и начальная фаза зависят от способа возбуждения колебаний. Например, если груз пруженного маятника отклоняют от положения равновесия и на расстояние $x_0$ и отпускают без толчка, тогда уравнением движения маятника является уравнение:

\

с начальными условиями:

\

При таком возбуждении колебания пружинного маятника можно описывать выражением:

\

Сложение колебаний и начальная фаза

Тело, совершающее колебания, способно принимать участие в нескольких колебательных процессах одновременно. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.

Допустим, что два колебания с равными частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:

\

тогда амплитуда суммарного колебания равна:

\

где $A_1$; $A_2$ — амплитуды складывающихся колебаний; ${\varphi }_2;;{\varphi }_1$ — начальные фазы суммирующихся колебаний.

Как найти фазу колебания

При этом начальную фазу полученного колебания ($\varphi $) вычисляют, применяя формулу:

\

Уравнение траектории точки, которая принимает участие в двух взаимно перпендикулярных колебаниях с амплитудами $A_1$и $A_2$ и начальными фазами ${\varphi }_2и{\varphi }_1$:

\

В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:

\

что говорит о движении точки по прямой линии.

Если разность начальных фаз складываемых колебаний составляет $\Delta \varphi ={\varphi }_2-{\varphi }_1=\frac{\pi }{2},$ уравнением траектории становится формула:

\

что означает, траектория движения эллипс.

Примеры задач с решением

Пример 1

Задание. Колебания пружинного осциллятора возбуждены толчком из положения равновесия, при этом грузу сообщают мгновенную скорость, равную $v_0$. Запишите начальные условия для такого колебания и функцию $x(t)$, описывающую данные колебания.

Решение. Сообщение грузу пружинного маятника мгновенной скорости равной $v_0$ означает, что при описании его колебаний с помощью уравнения:

\

начальными условиями будут:

\

Подставим в выражение (1.1) $t=0$, имеем:

\

Так как $A\ne 0$, то ${\cos \left(\varphi \right)\ }=0\to \varphi =\pm \frac{\pi }{2}.$

Возьмем первую производную $\frac{dx}{dt}$ подставим момент времени $t=0$:

\

Из (1.4) следует, что начальная фаза получается $\varphi =-\frac{\pi }{2}.$ Подставим, полученную начальную фазу и амплитуду в уравнение (1.1):

\

Ответ. $x(t)=\frac{v_0}{{\omega }_{0\ }}{\sin (\ }{\omega }_0t)$

Пример 2

Задание. Два колебания одного направления складываются. Уравнения этих колебаний имеют вид: $x_1={\cos \pi (t+\frac{1}{6})\ };;\ x_2=2{\cos \pi (t+\frac{1}{2})\ }$. Какова начальная фаза полученного колебания?

Решение. Запишем уравнение гармонических колебаний по оси X:

\

Преобразуем заданные в условии задачи уравнения к этому же виду:

\;;\ x_2=2{\cos \left(2.2).\ }\]

Сравнивая уравнения (2.2) с (2.1) получим, что начальные фазы колебаний равны:

\

Изобразим на рис.1 векторную диаграмму колебаний.

$tg\ \varphi $ суммарных колебаний можно найти из рис.1:

\ \

Ответ. $\varphi =70,9{}^\circ $

Читать дальше: начальная фаза.

Как нам уже известно, при заданной амплитуде колебаний, в любой момент времени мы можем определить координату тела. Она будет однозначно задаваться аргументом тригонометрической функции φ = ω0*t. Величина φ, которая стоит под знаком тригонометрической функции, называется фазой колебаний.

Для фазы единицами измерения являются радианы. Фаза однозначно определяет не только координату теда в любой момент времени, но так же скорость или ускорение.

Фаза незатухающих гармонических колебаний, формула

Поэтому считается, что фаза колебаний определяет состояние колебательной системы в любой момент времени.

Конечно же при условии что задана амплитуда колебаний. Два колебания, у которых одинаковые частота и период колебаний могут отличаться друг от друга фазами.

  • φ = ω0*t = 2*pi*t/T.

Если выразить время t в количестве периодов, которые пройдены от начала колебаний, то любому значению времени t, соответствует значение фазы, выраженной в радианах. Например, если взять время t = Т/4, то этому значению будет соответствовать значение фазы pi/2.

Таким образом, мы можем изобразить график зависимости координаты не от времени, а от фазы, и получим точно такую же зависимость. На следующем рисунке представлен такой график.

Начальная фаза колебаний

При описании координаты колебательного движения мы использовали функции синуса и косинуса. Для косинуса мы записывали следующую формулу:

Но мы можем описать эту же траекторию движения и с помощью синуса. При этом нам необходимо сдвинуть аргумент на pi/2, то есть отличие синуса от косинуса — pi/2 или четверть периода.

  • x=Xm*sin(ω0*t+pi/2).

Значение pi/2 называется начальной фазой колебания. Начальная фаза колебания — положение тела в начальный момент времени t = 0. Для того, чтобы заставить маятник колебаться, мы должны вывести его из положения равновесия. Мы можем это сделать двумя путями:

  • Отвести его в сторону и отпустить.
  • Ударить по нему.

В первом случае, мы сразу же изменяем координату тела, то есть, в начальный момент времени координата будет равна значению амплитуды. Для описания такого колебания удобнее использовать функцию косинуса и форму

либо же формулу

  • x = Xm*sin(ω0*t+&phi),

где φ- начальная фаза колебания.

Если мы ударим по телу, то в начальный момент времени его координата равняется нулю, и в таком случае удобнее использовать форму:

Два колебания, которые различаются только начальной фазой, называются сдвинутыми по фазе.

Например, для колебаний описанных следующими формулами:

  • x = Xm*sin(ω0*t),
  • x = Xm*sin(ω0*t+pi/2),

сдвиг фаз равен pi/2.

Сдвиг фаз еще иногда называют разностью фаз.

На следующем рисунке представлены два колебания сдвинутые друг относительно друга на разность фаз pi/2.

Нужна помощь в учебе?


Предыдущая тема: Гармонические колебания: амплитуда и период колебаний
Следующая тема:&nbsp&nbsp&nbspПревращение энергии при гармонических колебаниях: формулы и рисунки

Как нам уже известно, при заданной амплитуде колебаний, в любой момент времени мы можем определить координату тела. Она будет однозначно задаваться аргументом тригонометрической функции φ = ω0*t. Величина φ, которая стоит под знаком тригонометрической функции, называется фазой колебаний.

Для фазы единицами измерения являются радианы. Фаза однозначно определяет не только координату теда в любой момент времени, но так же скорость или ускорение. Поэтому считается, что фаза колебаний определяет состояние колебательной системы в любой момент времени.

Конечно же при условии что задана амплитуда колебаний.

Фаза колебаний.

Два колебания, у которых одинаковые частота и период колебаний могут отличаться друг от друга фазами.

  • φ = ω0*t = 2*pi*t/T.

Если выразить время t в количестве периодов, которые пройдены от начала колебаний, то любому значению времени t, соответствует значение фазы, выраженной в радианах. Например, если взять время t = Т/4, то этому значению будет соответствовать значение фазы pi/2.

Таким образом, мы можем изобразить график зависимости координаты не от времени, а от фазы, и получим точно такую же зависимость. На следующем рисунке представлен такой график.

Начальная фаза колебаний

При описании координаты колебательного движения мы использовали функции синуса и косинуса. Для косинуса мы записывали следующую формулу:

Но мы можем описать эту же траекторию движения и с помощью синуса. При этом нам необходимо сдвинуть аргумент на pi/2, то есть отличие синуса от косинуса — pi/2 или четверть периода.

  • x=Xm*sin(ω0*t+pi/2).

Значение pi/2 называется начальной фазой колебания. Начальная фаза колебания — положение тела в начальный момент времени t = 0. Для того, чтобы заставить маятник колебаться, мы должны вывести его из положения равновесия. Мы можем это сделать двумя путями:

  • Отвести его в сторону и отпустить.
  • Ударить по нему.

В первом случае, мы сразу же изменяем координату тела, то есть, в начальный момент времени координата будет равна значению амплитуды. Для описания такого колебания удобнее использовать функцию косинуса и форму

либо же формулу

  • x = Xm*sin(ω0*t+&phi),

где φ- начальная фаза колебания.

Если мы ударим по телу, то в начальный момент времени его координата равняется нулю, и в таком случае удобнее использовать форму:

Два колебания, которые различаются только начальной фазой, называются сдвинутыми по фазе.

Например, для колебаний описанных следующими формулами:

  • x = Xm*sin(ω0*t),
  • x = Xm*sin(ω0*t+pi/2),

сдвиг фаз равен pi/2.

Сдвиг фаз еще иногда называют разностью фаз.

На следующем рисунке представлены два колебания сдвинутые друг относительно друга на разность фаз pi/2.

Нужна помощь в учебе?


Предыдущая тема: Гармонические колебания: амплитуда и период колебаний
Следующая тема:&nbsp&nbsp&nbspПревращение энергии при гармонических колебаниях: формулы и рисунки

admin