Как найти силу реакции опоры формула

Как найти силу реакции опоры формула

Содержание

I. Механика

Физика->Динамика->силы в природе->

Тестирование онлайн

Что надо знать о силе

Сила — векторная величина. Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли. Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз.

Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину — уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации — сила упругости.

Закон Гука

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел здесь.

Вес тела

Вес тела — это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести — сила, которая возникает в результате взаимодействия с Землей. Вес — результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же — сила, которая приложена на опору (не на предмет)!

Сила нормальной реакции

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес — силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес — это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью. Невесомость — состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес — сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка — отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше — тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона, сила Ампера, сила Лоренца, подробно рассмотрены в разделе Электричество.

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой. Поэтому на схемах различные точки приложения переносят в одну точку — в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Силы трения*

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее — между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Взаимосвязь силы тяжести, закона гравитации и ускорения свободного падения*

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.

Физика повсюду

А.И.Семке,
г. Ейск, Краснодарский кр.

Задачи по физике с элементами других наук

Механика

Кинематика

1. Явление торнадо (смерчи, вихри, ураганы, тайфуны, тропические циклоны) в России наблюдается сравнительно редко, а в США – до 640 раз в год. Особенно часто торнадо возникают на равнинах штатов Техаса, Оклахомы, Канзаса и Небраски. Живущие там люди строют в своих домах специальные укрытия, защищающие от смерча. Образуются смерчи на равнинах Северной Америки, когда небольшие области разреженного воздуха очень быстро поднимаются вверх и создают огромные вихревые «трубы», которые скачками перемещаются по поверхности Земли. Все, что попадается на их пути, всасывается в «трубу». При вращении воздуха со скоростью 100 м/с создается воздушная воронка диаметром не менее 200 м с разреженным внутри воздухом. Центробежные силы отгоняют к краям воронки тяжелые капли воды и града и создают стенки толщиной 10–20 м.

  • Задача. По данным, приведенным выше, вычислите центростремительное ускорение, период вращения торнадо, а также угловую скорость.

2. Мощные тропические ураганы происходят обычно поздним летом или ранней осенью. Они берут начало над теплым океаном в районе экватора, когда теплый воздух, насыщенный влагой, поднимается вверх над огромными областями и формирует вихри облаков. Холодный воздух, опускаясь, под действием бокового ветра образует огромный вихрь, который начинает перемещаться вдоль поверхности моря. Ураганы приносят тысячи тонн дождя и сильнейший ветер (до 320 км/ч). Доходя до берега, они причиняют людям много бед. Каждому урагану присваивается имя. Первый ураган в сезоне получает имя на букву «А», второй – на букву «Б» и т.д.

  • Задача. За какое время пронесется ураган от г. Краснодара до г. Ейска, если расстояние между этими городами 200 км?

3. Самый разрушительный из всех известных нам торнадо пронесся в США 18 марта 1925 г. Страшный вихрь прошел 352 км. Погибли 689 человек. В полосе до 1,5 км полностью были разрушены жилые дома и хозяйственные постройки. Были случаи, когда поезда сбрасывало с рельсов, иногда на 150–200 м отбрасывало грузовые машины и даже железнодорожные вагоны.

  • Задача. Определите период вращения торнадо, его частоту и угловую скорость, если скорость воздушного потока на периферии достигала 25 м/с.

4. Летать по-настоящему пингвины не умеют, но их умению маневренно и быстро передвигаться в воде позавидовал бы самый лучший летун среди пернатых. Пингвин «летит», быстро работая крыльями, как веслами. Под водой пингвины развивают скорость до 30 км/ч. Помимо головоногих моллюсков, пингвин питается рыбой, а здесь без умения хорошо плавать можно и голодным остаться!

  • Задача. Какое расстояние пингвин проплывет по прямой с максимальной скоростью за 5 с?

5. В результате систематических наблюдений ученые установили, что скорость движения перелетных стай от 18 до 93 км/ч. При этом весной птицы летят со средней скоростью около 50 км/ч, а осенью – 43 км/ч. Серая ворона летит со скоростью 50 км/ч, скворец – в среднем 74 км/ч, мелкие воробьиные – 50–60 км/ч, утки – 72 км/ч, гуси – 90 км/ч.

  • Задача. Переведите перечисленные выше скорости в единицы м/с.

6. Несмотря на маленькие размеры, колибри способны пролетать значительные расстояния. Например, рубиновогорлая колибри весной и осенью перелетает Мексиканский залив, преодолевая без остановки примерно 900 км со скоростью 40 км/ч. При порхающем полете крылья колибри движутся со скоростью 3000–4800 взмахов в минуту.

  • Задача. Определите время перелета колибри через Мексиканский залив.

7. Пчеле нужно посетить 10–12 млн медоносных цветков и пролететь в среднем 8–10 тыс. км. Чтобы собрать 1 кг меда пчела должна пролететь около 500 тыс. км. Но одна пчела за свою короткую жизнь вряд ли успеет собрать такое количество меда. Каждая собирает 100–150 г этого ценного продукта в среднем. Скорость свободной от ноши пчелы составляет около 65 км/ч.

Нагруженная на 3/4 своего веса пчела летит почти вдвое медленнее.

  • Задача. Во сколько раз время полета свободной пчелы до цветка больше, чем время возвращения в улей, но уже с ношей? Как при этом отличаются кинетические энергии свободной пчелы и пчелы с ношей?

8. Общая длина магистрали «Санкасен» («Новая линия») в Японии около 1100 км. Поезда идут по ней со средней скоростью 200 км/ч. Особенно велико движение на отрезке Токио–Осака длиной 515 км, где за сутки проходит до 120 пар поездов, а за год перевозится 120 млн пассажиров, что равно всему населению страны. Расстояние между этими городами экспресс «Хикари» проходит за 2 ч 15 мин. При этом он преодолевает 66 тоннелей и 3 тыс. мостов.

  • Задача. Определите среднюю скорость экспресса «Хикари».

9. В 1953 г. на главном здании Московского государственного университета им. М.В.Ломоносова были установлены самые большие башенные часы. Девятиметровый циферблат виден издалека.

  • Задача. Определите линейную и угловую скорости минутной стрелки этих часов.

10. В Австрии растет маленький полукустарник под названием дорикниум. Солнечные лучи согревают плоды этого растения, и из соплодий выстреливают семена. Растения «стреляют» для того, чтобы как можно дальше разбросать свои семена и победить в борьбе с себе подобными за место под солнцем.

  • Задача. С какой скоростью растение горизонтально «стреляет» своими семенами, если высота кустарника 70 см, а семена обнаружили на расстоянии 2 м?

11. Некоторые рекорды достигаются длительной тренировкой. Как пишет немецкий журнал «Штерн», некий Эрден Чэмпен из США в 1980 г. бросил виноградину на расстояние 97,43 м и попал прямо в рот своему партнеру.

  • Задача. С какой скоростью необходимо было запустить эту виноградину под углом 45° к горизонту? На какую максимальную высоту она поднялась? Силу сопротивления воздуха не учитывать.

12. Самым «воинственным» растением является бешеный огурец. В диком виде этот «артиллерист» растет в Крыму. От обычного его можно отличить по щетинкам, покрывающим поверхность. И листья, и плод, и цветки у него, как у обычного огурца. В «бешенство» он приходит, когда полностью созревает. Происходит это внезапно и может серьезно напугать человека или животное. Огурец с треском отрывается от плодоножки, подпрыгивает, вертится волчком. А из отверстия, где только что была ножка плода, на 6–8 м бьет струя липкого сока, смешанного с семенами. Оказывается, пока плод зреет, внутри него накапливаются газы. К моменту созревания их давление в полости достигает 3 атм!

  • Задача. С какой скоростью должна вырываться струя сока с семенами, чтобы достичь указанной выше высоты? Как при этом изменяется энергия семян?

13. Рекорд дальности полета с одновременным голоданием принадлежит золотистой ржанке, которая без посадки пересекает участок Тихого океана между Аляской и Гавайскими островами, равный 3500 км, со средней скоростью 50 км/ч.

  • Задача. За какое время золотистая ржанка совершает свой голодный полет?

14. У кенгуру большие и крепкие задние ноги. Поэтому животное перемещается прыжками, удерживая равновесие с помощью жесткого хвоста. Самый длинный прыжок, зарегистрированный учеными, составляет 13 м 63 см. Рекордный прыжок в высоту равен 3 м 20 см.

  • Задача. С какой скоростью кенгуру должен отрываться от земли, чтобы достигнуть максимальной высоты? С какой скоростью должен прыгать кенгуру, чтобы преодолеть расстояние 13 м 63 см (пусть кенгуру прыгает под углом 30° к горизонту)?

Ответы

1. 100 м/c2; 6,28 с; 1 рад/с.

I. Механика

2. » 37,5 мин.
3. при ширине торнадо 1,5 км: 270 с; 0,0037 Гц; 0,023 рад/с.
4. » 41,7 м.
5. Весной около 13,9 м/с, осенью около 12 м/с.
6. 22,5 с.
7. Время полета до цветка меньше в 2 раза, чем от него, но с ношей. Кинетическая энергия пчелы без ноши в 8/7 раза больше, чем с ношей.
8. » 63,5 м/с.
9. Линейная скорость равна 0,008 м/с, а угловая 0,002 рад/с.
10. 5,4 м/с.
11. 31,2 м/с; 24,3 м.
12. » 12,6 м/с.
13. 7 ч.
14. 8 м/с и 12 м/с.

Динамика

15. Самой маленькой птицей в мире считается колибри-шмель, обитающая на Кубе. Масса этой малютка всего лишь 1,7 г (масса других колибри – от 3 до 20 г).

  • Задача. Определите силу тяжести, действующую на эту птичку.

16. Самой тяжелой птицей нашей страны считается дрофа. Масса самца этой птицы 16 и даже 20 кг при длине тела около метра и размахе крыльев 275 м. Дрофы не только хорошо летают, но могут и очень быстро бегать. Живут эти птицы в степной полосе, питаются зернами различных злаков, травами, мышами и полевками.

  • Задача. Определите силу тяжести, действующую на эту птицу.

17. Пресноводными акулами называют старых щук, достигающих 1,5 м в длину и массы 50 кг. В Ладожском озере вылавливали осетров длиной 2,6 м и массой 128 кг. В реках тропической Америки живет самая большая из костных рыб – арапайма; ее длина 4 м, масса 200 кг. В Днепре ловили сомов до 5 м и 300 кг!

  • Задача. Определите площадь капроновой нити, необходимой для вылова сома, если модуль Юнга капрона 500 ГПа, предел прочности 0,05 ГПа, запас прочности 4. Чему равно относительное удлинение?

18. Чемпионами по глубоководному нырянию являются животные Арктики и Антарктики. Так, гагару ученые наблюдали из батискафа на глубине 80 м. Королевский же пингвин ныряет на глубину до 200 м и более.

  • Задача. Определите давление, оказываемое на гагару и пингвина, на глубинах, приведенных выше.

19. Последние исследования палеонтологов показали, что самым крупным ископаемым ящером является сейсмозавр (сотрясатель земли), достигающий длины 40 м и массы 40 т. Ему немного уступает суперзавр – более 33 м. Оба найдены в отложениях Нью-Мексико (США).

  • Задача. Чему равны масса (в килограммах) и вес сейсмозавра?

20. На водопое верблюд может выпить залпом 57–60 л воды. А один подопытный верблюд, который шел 17 дней при 35-градусной жаре, на водопое выпил почти 100 л!

  • Задача. Как при этом изменилась масса подопытного верблюда? А вес?

21. Танкер грузоподъемностью 550 тыс. т имеет длину 480 м, ширину около 63 м и осадку с грузом около 30 м. Гребной винт такого судна равен высоте трехэтажного дома. Палубы занимают площадь 2,5 га.

  • Задача. Определите силу Архимеда, действующую на такой танкер.

22. Каркасом человеческого тела служит скелет, состоящий приблизительно из 200 костей, большинство из которых (за исключением костей черепа и таза) соединены между собой таким образом, что при движении относительное расположение их может изменяться. Кости приводятся в движение скелетными мышцами, каждая из которых прикрепляется к двум различным костям. При возбуждении мышцы ее длина уменьшается и угол между соответствующими костями скелета изменяется.

  • Задача. Сила мышц рук определяется сдавливанием пружинного динамометра. Так, у мальчиков в возрасте 12 лет сила мышц рук равна 257 и 235 Н соответственно для правой и левой рук, а у девочек – 203 и 183 Н. Определите, на сколько сжимается пружина динамометра при этих нагрузках, если ее коэффициент жесткости 50 кН/с?

23. Первое, с чем сталкивается космонавт при взлете, это ускорение, когда космический корабль быстро набирает скорость. Во время выведения корабля на орбиту искусственного спутника Земли на космонавта в течение почти 5 мин действует ускорение от 1g до 7g. Ускорение действует и при входе в плотные слои атмосферы при возвращении на Землю. Естественно, увеличение веса космонавта затрудняет его движения. Поэтому в периоды действия перегрузок на старте корабля и его торможении большинство операций, связанных с управлением, должно быть автоматизировано.

  • Задача. Средняя масса космонавта 70 кг. Как изменятся масса и вес космонавта при выведении космического аппарата на околоземную орбиту?

24. Жираф обладает необычайно высоким ростом – около 5,5 м. Сердце жирафа находится на высоте около 2,5 м. Кровеносные сосуды ног должны испытывать огромное давление всего этого столба жидкости. Что же спасает ноги жирафа от отеков? Между сосудами ног жирафа и его плотной шкурой находится много межклеточной жидкости, которая и спасает сосуды от чрезмерного расширения. Если бы у жирафа на уровне сердца было такое же артериальное давление, как у человека, то на уровне головы оно было бы уже меньше атмосферного, и кровь не могла бы протекать через мозг. Поэтому жираф – гипертоник. Его артериальное давление на уровне сердца может достигать 50 кПа.

  • Задача. Определите гидростатическое давление, которое оказывает кровь на высоте сердца и ног жирафа. С какой силой кровь давит на 1 см2 кровеносных сосудов на уровне сердца?

25. Барабанная перепонка человека имеет площадь примерно 0,65 см2. При громкости звука 20 дБ амплитуда звукового давления равна 20 мН/м2 – это звуковой фон в очень тихой комнате. Болевой порог для уха наступает при громкости 140 дБ и амплитуде звукового давления 200 Н/м2, а механические повреждения барабанной перепонки – при громкости 160 дБ и амплитуде звукового давления 2 кН/м2.

  • Задача. Определите, с какой силой действует в этих случаях звук на барабанную перепонку.

26. Экстравагантность и оригинальность стали обычным явлением в жизни американского общества. На праздновании столетнего юбилея г. Форт-Пайна (штат Алабама, США) всех поразил самый большой в мире торт, выполненный в виде рельефной карты штата. Масса кондитерского «великана» была равна 58 т, из них 7,5 т пришлось на мороженое.

  • Задача. Определите вес этого «чуда». Какая сила тяжести действовала на торт до его съедения?

27. Средняя плотность акулы больше плотности морской воды, т.к. эта древняя рыба не имеет плавательного пузыря, и если она перестанет двигаться, то начнет опускаться на дно, где может быть раздавлена толщей воды. Чтобы этого не случилось, парные грудные и брюшные плавники работают как гидрокрылья. Они могут поворачиваться под различным углом к длинной оси тела, когда рыбе нужно подниматься или опускаться в толще воды.

  • Задача. Сделайте чертеж и покажите расположение плавников акулы для случаев, когда ей нужно подниматься и опускаться. Покажите все силы, действующие при этом на акулу.

28. У костистых рыб есть орган, называемый плавательным пузырем. Хотя у предковых форм он обеспечивал более эффективное использование атмосферного воздуха для дыхания, у костистых рыб он был превращен в гидростатическое устройство.

  • Задача. Как рыба использует свой плавательный пузырь? Как при этом изменяется сила Архимеда, действующая на рыбу?

29. Рассмотрим горизонтальный поток воздуха относительно наклонной поверхности крыла в том случае, когда его передняя кромка приподнята над землей: крыло действует как несущая плоскость. Поток воздуха над крылом встречает меньшее сопротивление и развивает большую скорость, чем поток под крылом.

  • Задача. От чего зависит подъемная сила крыла?

30. Наиболее сильный смерч за последние годы в России наблюдался в г. Иванове 9 июня 1984 г. Со стороны Волги на город быстро надвигался черный столб с грибовидной верхушкой и багряными отсветами. После смерча, который пронесся с гулом и свистом, осталась растерзанная полоса из поваленных деревьев, перевернутых машин. Стихия валила вагоны, железобетонные фермы, срывала крыши, опрокидывала троллейбусы! Этот смерч прошел около 100 км, оставив полосу разрушений до 500 м. Вихрь был настолько силен, что сорвал 50-тонный бак водонапорной башни и отбросил его на 200 м.

  • Задача. Оцените центробежную силу, действовавшую на 50-тонный бак, если скорость ветра на периферии смерча была 34 м/с.

31. Большое Соленое озеро, расположенное в штате Юта (США), по своим размерам очень солидное: 120 км в длину и 80 км в ширину. Это самое большое озеро Запада Америки. Но катание на лодке здесь не радует. На водных лыжах кататься тоже рискованно: падение грозит… переломом костей! То же самое относится к нырянию. Был случай, когда подросток, отмахнувшись от советов, разбежался и нырнул. Вытащили его со сломанной шеей. Ударился он не об дно, а о… воду. Плыть в такой воде нелегко: ноги поднимаются выше головы, так что все равно можно захлебнуться. Вместо спасательного жилета или пояса остается привязать к ноге железную гирю.

  • Задача. Как изменяется сила Архимеда и сила тяжести при увеличении плотности раствора?

32. В 1861 г. экипаж французского судна «Алектон» пытался поймать кальмара длиной в 6–7 м и выдержал с ним 3-часовой бой. Когда в животное всадили гарпун, его не удалось поднять на борт, т.к. оно весило 2–3 т. Этот случай – как нападение гигантских кальмаров на подводную лодку «Наутилус» – описал Жюль Верн в своей книге «20 тысяч лье под водой».

  • Задача. Можно было бы поднять кальмара на тросе, изготовленном из стали с пределом прочности 109 Па, если его поперечное сечение 2 см2?

33. Речь пойдет о многократном победителе мировых, региональных, российских, затем всесоюзных чемпионатов по классической борьбе среди супертяжеловесов Хаджи-Мукане Мунайтпасове (1871–1948). Родившись в бедной крестьянской семье в ауле Карауткель Акмолинской области, Мукан с ранних лет приобщился к тяжелому наемному труду. Работая у купца О.Масликова, как-то зимой по велению хозяина он поехал за сеном. На обратном пути через степь внезапно завьюжило и начался сильный буран. Дорогу занесло, лошади выбились из сил, а одна, не устояв даже на ногах, упала и больше не вставала. Тогда Мукан погрузил ее на сани поверх сена, а вторую привязал сзади, сам же, впрягшись вместо тягловой силы, приволок все вместе домой. Тогда юноше было 18 лет от роду.

  • Задача. Какую силу прикладывал Мукан к саням, если масса саней с сеном 500 кг, масса лошади 500 кг, а коэффициент трения равен 0,002?

34. Некий капитан Биддинг из США решил проверить, какую перегрузку он может выдержать. Он привязал себя к саням с ракетным мотором, понесся вниз по наклонной плоскости, и вдруг внезапно остановил сани. На мгновение ускорение силы тяжести увеличилось в 82,6 раза. Напряжение продолжалось 1/400 с, но в этот момент пропало зрение, пульс остановился, человек оказался в глубоком обмороке, зато увековечил свое имя.

  • Задача. Во сколько раз при этом увеличился вес Биддинга, если угол наклона плоскости к горизонтали составлял 30°?

35. Кровь более вязкая, чем вода. При движении по сосудистой системе она испытывает сопротивление, обусловленное внутренним трением. Чем сосуды тоньше, тем больше трение и тем больше падает давление крови. В течение минуты сердце выбрасывает в аорту около 4 л крови. Скорость движения крови в аорте 0,5 м/с, а по капиллярам – 0,5 мм/с.

  • Задача. Как отличается сила сопротивления при движении крови по аорте от силы сопротивления крови, движущейся по капиллярам, если коэффициент сопротивления движению крови считать одинаковым для обоих случаев?

36. Необходимым условием перемещения животных является надежное сцепление между движущимся телом и опорой. Сцепление достигается либо заострениями на конечностях (когти, острые кромки копыт, подковные шипы), либо мелкими неровностями (щетинками, бугорками, чешуйками). У многих растений и животных имеются различные органы служащие для хватания (усики растений, хобот у слона, цепкие хвосты). Все они имеют форму, удобную для захвата, и шероховатую поверхность для увеличения коэффициента трения.

  • Задача. Определите коэффициент трения между змеей и землей, если змея массой 100 г движется равномерно со скоростью 1 м/с, при этом сила трения равна 0,15 Н.

Ответы

15. Примерно 0,017 Н.
16. 200 Н.
17. Примерно 2,4 см2.
18. 800 кПа, 2 Мпа.
19. 400 кН.
20. Увеличилась на 100 кг и на 1 кН.
21. Примерно 90 ГН.
22. Примерно на 5 мм; 4,7 мм; 4 мм; 3,6 мм.
23. Масса тела не изменяется, а вес возрастает от 700 Н до 4900 Н.
24. Давление крови примерно 25 кПа, сила давления на кровеносные сосуды 5 Н.
25. 1,3 мкН; 0,13 мН; 0,13 Н.
27. Вес торта в покое поставлял 580 кН, сила тяжести, действующая на него, равна 580 кН.
30. Примерно 116 кН.
32. Можно.
33. При равномерном движении сила равна 2 Н.
34. В 71,5 раз.
35. В 1000 раз.
36. 0,15.

Литература

Алексеев В.А. 300 вопросов и ответов о птицах. – Ярославль: Академия развития, 1997.//300 вопросов и ответов о насекомых. – Ярославль: Академия развития, 1998.
Анашкина Е.Н. 300 вопросов и ответов о птицах. – Ярославль: Академия развития, 1997.//300 вопросов и ответов о домашних животных. – Ярославль: Академия развития, 1998.
Беркемблит М.Б., Глаголева Е.Г. Электричество в живых организмах. – Москва: Наука, 1988 .
Бионика. – Москва: Наука, 1965.
Богданов К.Ю. Физик в гостях у биолога. – Москва: Наука, 1986.
Большаков А.П. Биология. Занимательные факты и тесты. – С.-Петербург: Паритет, 1999.
Грин Н., Стаут У., Тейлор Д. Биология в 3-х томах. – Москва: Мир, 1990.
Енохович А.С. Справочник по физике. – Москва: Просвещение, 1990.
Емельянов А.С. 300 вопросов и ответов по странам и континентам. – Ярославль: Академия развития, 1997.
Ильченко В.Р. Перекрестки физики, химии и биологии. – Москва: Просвещение, 1986.
Камышанова З.А., Камышанов К.А. 300 вопросов и ответов по истории и культуре древнего мира. – Ярославль: Академия развития, 1998.
Кац Ц.Б. Биофизика на уроках физики. – Москва, Просвещение, 1988.
Константинов А.И., Мовчан В.Н. Звуки в жизни зверей. – Ленинград: Издательство Ленинградского университета, 1985.
Кочнев С.А. 300 вопросов и ответов о Земле и Вселенной. – Ярославль: Академия развития, 1997.
Максаковский В.П. Экономическая и социальная география мира. – Москва: Просвещение, 2000.
Мезенцев В.А. Чудеса. Популярная энциклопедия в 2-х томах. – Алма-Ата: Главная редакция казахской советской энциклопедии, 1990.

I. Механика

Физика->Динамика->силы в природе->

Тестирование онлайн

Что надо знать о силе

Сила — векторная величина. Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли. Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз.

Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину — уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации — сила упругости.

Закон Гука

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел здесь.

Вес тела

Вес тела — это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести — сила, которая возникает в результате взаимодействия с Землей. Вес — результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же — сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес — силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес — это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю.

Как определить реакции в опорах?

Это состояние называется невесомостью. Невесомость — состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес — сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка — отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше — тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона, сила Ампера, сила Лоренца, подробно рассмотрены в разделе Электричество.

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой. Поэтому на схемах различные точки приложения переносят в одну точку — в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Силы трения*

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее — между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Взаимосвязь силы тяжести, закона гравитации и ускорения свободного падения*

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.

Положим камень на горизонтальную крышку стола, стоящего на Земле (рис. 104). Поскольку ускорение камня относительно Земли равно пулю, то по второму закону Ньютона сумма действующих на него сил равна нулю. Следовательно, действие на камень силы тяжести m · g должно компенсироваться какими-то другими силами. Ясно, что под действием камня крышка стола деформируется. Поэтому со стороны стола на камень действует сила упругости. Если считать, что камень взаимодействует лишь с Землей и крышкой стола, то сила упругости должна уравновешивать силу тяжести: Fупр = -m · g. Эту силу упругости называют силой реакции опоры и обозначают латинской буквой N. Так как ускорение свободного падения направлено вертикально вниз, сила N направлена вертикально вверх – перпендикулярно поверхности крышки стола.

Поскольку крышка стола действует на камень, то по третьему закону Ньютона и камень действует на крышку стола силой P = -N (рис. 105). Эту силу называют весом.

Весом тела называют силу, с которой это тело действует на подвес или опору, находясь относительно подвеса или опоры в неподвижном состоянии.

Ясно, что в рассмотренном случае вес камня равен силе тяжести: P = m · g. Это будет верно для любого тела, покоящегося на подвесе (опоре) относительно Земли (рис. 106). Очевидно, что в этом случае точка крепления подвеса (или опора) неподвижна относительно Земли.

Для тела, покоящегося на неподвижном относительно Земли подвесе (опоре), вес тела равен силе тяжести.

Вес тела также будет равен действующей на тело силе тяжести в случае, если тело и подвес (опора) движутся относительно Земли равномерно прямолинейно.

Если же тело и подвес (опора) движутся относительно Земли с ускорением так, что тело остается неподвижным относительно подвеса (опоры), то вес тела не будет равен силе тяжести.

Рассмотрим пример. Пусть тело массой m лежит на полу лифта, ускорение a которого направлено вертикально вверх (рис. 107). Будем считать, что на тело действуют только сила тяжести m · g и сила реакции пола N. (Вес тела действует не на тело, а на опору – пол лифта.) В системе отсчета, неподвижной относительно Земли, тело на полу лифта движется вместе с лифтом с ускорением a. В соответствии со вторым законом Ньютона произведение массы тела на ускорение равно сумме всех действующих на тело сил. Поэтому: m · a = N — m · g.

Следовательно, N = m · a + m · g = m · (g + a). Значит, если лифт имеет ускорение, направленное вертикально вверх, то модуль силы N реакции пола будет больше модуля силы тяжести. В самом деле, сила реакции пола должна не только скомпенсировать действие силы тяжести, но и придать телу ускорение в положительном направлении оси X.

Сила N – это сила, с которой пол лифта действует на тело. По третьему закону Ньютона тело действует на пол с силой P, модуль которой равен модулю N, но направлена сила P в противоположную сторону.

Эта сила является весом тела в движущемся лифте. Модуль этой силы P = N = m · (g + a). Таким образом, в лифте, движущемся с направленным вверх относительно Земли ускорением, модуль веса тела больше модуля силы тяжести.

Такое явление называют перегрузкой.

Например, пусть ускорение а лифта направлено вертикально вверх и его значение равно g, т. е. a = g. В этом случае модуль веса тела – силы, действующей на пол лифта, – будет равен P = m · (g + a) = m · (g + g) = 2m · g. То есть вес тела при этом будет в два раза больше, чем в лифте, который относительно Земли покоится или движется равномерно прямолинейно.

Для тела на подвесе (или опоре), движущемся с ускорением относительно Земли, направленным вертикально вверх, вес тела больше силы тяжести.

Отношение веса тела в движущемся ускоренно относительно Земли лифте к весу этого же тела в покоящемся или движущемся равномерно прямолинейно лифте называют коэффициентом перегрузки или, более кратко, перегрузкой.

Коэффициент перегрузки (перегрузка) – отношение веса тела при перегрузке к силе тяжести, действующей на тело.

В рассмотренном выше случае перегрузка равна 2. Понятно, что если бы ускорение лифта было направлено вверх и его значение было равно a = 2g, то коэффициент перегрузки был бы равен 3.

Теперь представим себе, что тело массой m лежит на полу лифта, ускорение которого a относительно Земли направлено вертикально вниз (противоположно оси X). Если модуль a ускорения лифта будет меньше модуля ускорения свободного падения, то сила реакции пола лифта по-прежнему будет направлена вверх, в положительном направлении оси X, а ее модуль будет равен N = m · (g — a). Следовательно, модуль веса тела будет равен P = N = m · (g — a), т. е. будет меньше модуля силы тяжести. Таким образом, тело будет давить на пол лифта с силой, модуль которой меньше модуля силы тяжести.

Это ощущение знакомо каждому, кто ездил на скоростном лифте или качался на больших качелях. При движении вниз из верхней точки вы чувствуете, что ваше давление на опору уменьшается. Если же ускорение опоры положительно (лифт и качели начинают подниматься), вас сильнее прижимает к опоре.

Если ускорение лифта относительно Земли будет направлено вниз и равно по модулю ускорению свободного падения (лифт свободно падает), то сила реакции пола станет равной нулю: N = m · (g — a) = m · (g — g) = 0. В этом случае пол лифта перестанет давить на лежащее на нем тело. Следовательно, согласно третьему закону Ньютона и тело не будет давить на пол лифта, совершая вместе с лифтом свободное падение. Вес тела станет равным нулю. Такое состояние называют состоянием невесомости.

Состояние, при котором вес тела равен нулю, называют невесомостью.

Наконец, если ускорение лифта, направленное к Земле, станет больше ускорения свободного падения, тело окажется прижатым к потолку лифта. В этом случае вес тела изменит свое направление. Состояние невесомости исчезнет. В этом можно легко убедиться, если резко дернуть вниз банку с находящимся в ней предметом, закрыв верх банки ладонью, как показано на рис. 108.

Итоги

Весом тела называют силу, с которой это тело действует на поднес или опору, находясь относительно подвеса или опоры в неподвижном состоянии.

Вес тела в лифте, движущемся с направленным вверх относительно Земли ускорением, по модулю больше модуля силы тяжести. Такое явление называют перегрузкой.

Коэффициент перегрузки (перегрузка) – отношение веса тела, при перегрузке к силе тяжести, действующей на это тело.

Если вес тела равен нулю, то такое состояние называют невесомостью.

Вопросы

  1. Какую силу называют силой реакции опоры? Что называют весом тела?
  2. К чему приложен вес тела?
  3. Приведите примеры, когда вес тела: а) равен силе тяжести; б) равен нулю; в) больше силы тяжести; г) меньше силы тяжести.
  4. Что называют перегрузкой?
  5. Какое состояние называют невесомостью?

Упражнения

  1. Семиклассник Сергей стоит на напольных весах в комнате. Стрелка прибора установилась напротив деления 50 кг. Определите модуль веса Сергея. Ответьте на остальные три вопроса об этой силе.
  2. Найдите перегрузку, испытываемую космонавтом, который находится в ракете, поднимающейся вертикально вверх с ускорением a = Зg.

    Как найти силу трения скольжения

  3. С какой силой действует космонавт массой m = 100 кг на ракету, указанную в упражнении 2? Как называется эта сила?
  4. Найдите вес космонавта массой m = 100 кг в ракете, которая: а) стоит неподвижно на пусковой установке; б) поднимается с ускорением a = 4g, направленным вертикально вверх.
  5. Определите модули сил, действующих на гирю массой m = 2 кг, которая висит неподвижно На легкой нити, прикрепленной к потолку комнаты. Чему равны модули силы упругости, действующей со стороны нити: а) на гирю; б) на потолок? Чему равен вес гири? Указание: для ответа на поставленные вопросы воспользуйтесь законами Ньютона.
  6. Найдите вес груза массой m = 5 кг, подвешенного на нити к потолку скоростного лифта, если: а) лифт равномерно поднимается; б) лифт равномерно опускается; в) поднимающийся вверх со скоростью v = 2 м/с лифт начал торможение с ускорением a = 2 м/с2; г) опускающийся вниз со скоростью v = 2 м/с лифт начал торможение с ускорением a = 2 м/с2; д) лифт начал движение вверх с ускорением a = 2 м/с2; е) лифт начал движение вниз с ускорением a = 2 м/с2.

Сила трения. Формула. Определение. Основные понятия.

 Сила трения возникает в месте соприкосновения двух тел и препятствует взаимному перемещению этих тел относительно друг друга. Она всегда направлена противоположно движению тел либо направлению приложения внешней силы. В случае если тела неподвижны. В результате трения механическая энергия переходит в тепловую.

 

 Трение делится на трение покоя и трение движения. Трение движения в свою очередь делится трение качения и трение скольжения. Трение покоя возникает, когда соприкасающиеся тела пытаются сместить друг относительно друга.

Формула 1 — Сила трения.

 N  — Сила реакции опоры.

 Мю — Коэффициент трения.

 Трение покоя, как видно из названия, возникает, когда к телам прикладывается сторонняя сила стремящаяся сместить их друг относительно друга. Но движение еще не возникает. Движения нет именно потому, что ему препятствует сила трения покоя. В тот момент, когда внешняя сила превысит силу трения покоя, возникнет сила трения скольжения.

 Причиной возникновения силы трения является неровности на поверхности соприкасающихся тел. Даже если поверхности выглядят гладкими, на самом деле при большом увеличении, видно, что поверхность является шершавой. Так вот именно эти неровности на поверхности двух тел и цепляются друг к другу.

Рисунок 1 — Соприкасающиеся поверхности.

Формула расчета силы реакции опоры

 Казалось бы, если поверхности отполировать до зеркального блеска то трение между ними должно если не исчезнуть совсем, то уж точно упасть до минимального значения. А на практике оказывается все не так просто. В случае очень гладких поверхностей проявляется еще один фактор увеличивающий трение. Это межмолекулярное притяжение. При очень тонкой обработке материала, молекулы вещества двух тел находятся настолько близко друг к другу, что возникают настолько сильные силы притяжения, что они препятствуют движению тел друг относительно друга.

 Конечно же, на величину силы трения влияет и сила, которая прижимает тела друг к другу. Чем она выше, тем выше сила трения. Если вы зимой катите, пустые санки по снегу это выходит достаточно легко. Если на санках будет сидеть ребенок, тащить их будет уже сложнее. Ну а если в них сядет взрослый, вы уже дважды подумаете, а стоит ли их тащить вообще. Во всех этих случаях качество поверхности полозьев санок и поверхность снега неизменна. А вот сила тяжести разная, что и приводит к увеличению силы трения.

 Кроме трения скольжения еще существует и сила трения качения. Опять же в названии скрыта и суть явления. То есть это, то трение, которое возникает во время качения одного объекта по поверхности другого. Трение качения во много раз меньше трения скольжения.

 Представьте себе металлический шарик, катящийся по поверхности стола. Из-за деформации стола, да и самого шарика, место контакта между ними представляет не точку, а некоторую поверхность. В результате точка приложения реакции опоры смещается от центра равновесия немного вперед. А реакции опоры немного назад. В результате Нормальная часть реакции опоры компенсируется силой тяжести, а тангенциальная составляющая и есть той силой трения качению.

Формула 2 — Сила трения качения.

 k — Коэффициент трения качения.

 r — радиус катящегося тела.

 N — Модуль нормальной составляющей реакции опоры.

Рисунок 2 — Трение качения.

 Для уменьшения трения, как скольжения, так и качения, применяют смазку. Смазка уменьшает сцепление между поверхностями за счет того что не сами поверхности трутся друг о друга. А слои жидкости между собой.

I. Механика

Физика->Динамика->силы в природе->

Тестирование онлайн

Что надо знать о силе

Сила — векторная величина. Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли. Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз.

Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину — уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации — сила упругости.

Закон Гука

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел здесь.

Вес тела

Вес тела — это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести — сила, которая возникает в результате взаимодействия с Землей.

Реакции опоры

Вес — результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же — сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес — силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес — это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью. Невесомость — состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес — сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка — отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше — тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона, сила Ампера, сила Лоренца, подробно рассмотрены в разделе Электричество.

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой. Поэтому на схемах различные точки приложения переносят в одну точку — в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Силы трения*

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее — между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Взаимосвязь силы тяжести, закона гравитации и ускорения свободного падения*

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.

admin