Наибольшее и наименьшее значение функции

Наибольшее и наименьшее значение функции

Содержание

Функции, исследование функций

Наибольшее и наименьшее значение функции.


С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования… Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x).


Наибольшее и наименьшее значение функции — определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Наименьшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На отрезке

На первом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри отрезка .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее — в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале

На четвертом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри открытого интервала (-6;6).

На интервале , о наибольшем значении никаких выводов сделать нельзя.

На бесконечности

В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y) в стационарной точке с абсциссой x=1, а наименьшее значение (min y) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3.

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3. Графическая иллюстрация этого примера приведена на рисунке №8.

К началу страницы

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .


Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b.
  5. Из полученных значений функции выбираем наибольшее и наименьшее — они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке .

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по правилу дифференцирования дроби:

Очевидно, производная функции существует во всех точках отрезков и .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2. Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1, x=2 и x=4:

Следовательно, наибольшее значение функции достигается при x=1, а наименьшее значение – при x=2.

Для второго случая вычисляем значения функции лишь на концах отрезка (так как он не содержит ни одной стационарной точки):

Следовательно, .

Графическая иллюстрация.

К началу страницы

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X.

Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.

  1. Проверяем, является ли интервал X подмножеством области определения функции.

  2. Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.

    Как найти наибольшее наименьшее значение функции

  3. Определяем все стационарные точки, попадающие в промежуток X. Для этого приравниваем производную функции к нулю, решаем полученное уравнение и выбираем подходящие корни.

    Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.

  4. Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).

    Дальнейшие действия зависят от интервала X.

    Если интервал X имеет вид:

  5. Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции.

Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2).

  1. Для первого промежутка вычисляем значение функции при x=-4 и предел на минус бесконечности:

    Так как , то , а о наименьшем значении функции выводов сделать нельзя. Можно лишь утверждать, что значения функции ограничены снизу значением -1 (на минус бесконечности значения функции асимптотически приближаются к прямой y=-1).

  2. Второй интервал интересен тем, что не содержит ни одной стационарной точки и ни одна из его границ не является строгой. В этом случае мы не сможем найти ни наибольшего, ни наименьшего значения функции. Вычислив предел на минус бесконечности и при стремлении аргумента к минус трем слева, мы лишь сможем определить интервал значений функции:

    Следовательно, значения функции находятся в интервале при x из промежутка .

  3. Для третьего промежутка (-3;1] вычислим значение функции в стационарной точке и при x=1, а также односторонний предел, при стремлении аргумента к -3 справа:

    Следовательно, наибольшее значение на этом интервале функция принимает в стационарной точке , наименьшее значение функции мы вычислить не можем, но значения функции ограничены снизу величиной -4.

  4. Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:

    Поэтому , наименьшее значение определить нет возможности, значения функции ограничены снизу величиной -4.

  5. Результаты предыдущих двух пунктов позволяют утверждать, что на интервале

    Функции, исследование функций

    Наибольшее и наименьшее значение функции.


    С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования… Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

    Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

    В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x).


    Наибольшее и наименьшее значение функции — определения, иллюстрации.

    Кратко остановимся на основных определениях.

    Наибольшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

    Наименьшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

    Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

    Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

    Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

    Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

    Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

    Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

    На отрезке

    На первом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри отрезка .

    Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее — в точке с абсциссой, соответствующей правой границе интервала.

    На рисунке №3 граничные точки отрезка являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

    На открытом интервале

    На четвертом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри открытого интервала (-6;6).

    На интервале , о наибольшем значении никаких выводов сделать нельзя.

    На бесконечности

    В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y) в стационарной точке с абсциссой x=1, а наименьшее значение (min y) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3.

    На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3. Графическая иллюстрация этого примера приведена на рисунке №8.

    К началу страницы

    Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .


    Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.

  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b.
  5. Из полученных значений функции выбираем наибольшее и наименьшее — они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке .

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по правилу дифференцирования дроби:

Очевидно, производная функции существует во всех точках отрезков и .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2. Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1, x=2 и x=4:

Следовательно, наибольшее значение функции достигается при x=1, а наименьшее значение – при x=2.

Для второго случая вычисляем значения функции лишь на концах отрезка (так как он не содержит ни одной стационарной точки):

Следовательно, .

Графическая иллюстрация.

К началу страницы

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X.

Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.

  1. Проверяем, является ли интервал X подмножеством области определения функции.

  2. Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.

  3. Определяем все стационарные точки, попадающие в промежуток X. Для этого приравниваем производную функции к нулю, решаем полученное уравнение и выбираем подходящие корни.

    Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.

  4. Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).

    Дальнейшие действия зависят от интервала X.

    Если интервал X имеет вид:

  5. Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2).

  1. Для первого промежутка вычисляем значение функции при x=-4 и предел на минус бесконечности:

    Так как , то , а о наименьшем значении функции выводов сделать нельзя. Можно лишь утверждать, что значения функции ограничены снизу значением -1 (на минус бесконечности значения функции асимптотически приближаются к прямой y=-1).

  2. Второй интервал интересен тем, что не содержит ни одной стационарной точки и ни одна из его границ не является строгой. В этом случае мы не сможем найти ни наибольшего, ни наименьшего значения функции. Вычислив предел на минус бесконечности и при стремлении аргумента к минус трем слева, мы лишь сможем определить интервал значений функции:

    Следовательно, значения функции находятся в интервале при x из промежутка .

  3. Для третьего промежутка (-3;1] вычислим значение функции в стационарной точке и при x=1, а также односторонний предел, при стремлении аргумента к -3 справа:

    Следовательно, наибольшее значение на этом интервале функция принимает в стационарной точке , наименьшее значение функции мы вычислить не можем, но значения функции ограничены снизу величиной -4.

  4. Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:

    Поэтому , наименьшее значение определить нет возможности, значения функции ограничены снизу величиной -4.

  5. Результаты предыдущих двух пунктов позволяют утверждать, что на интервале

    Функции, исследование функций

    Наибольшее и наименьшее значение функции.


    С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования… Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

    Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

    В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x).


    Наибольшее и наименьшее значение функции — определения, иллюстрации.

    Кратко остановимся на основных определениях.

    Наибольшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

    Наименьшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

    Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

    Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

    Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

    Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

    Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

    Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

    На отрезке

    На первом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри отрезка .

    Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее — в точке с абсциссой, соответствующей правой границе интервала.

    На рисунке №3 граничные точки отрезка являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

    На открытом интервале

    На четвертом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри открытого интервала (-6;6).

    Наименьшее и наибольшее значения функции на отрезке

    На интервале , о наибольшем значении никаких выводов сделать нельзя.

    На бесконечности

    В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y) в стационарной точке с абсциссой x=1, а наименьшее значение (min y) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3.

    На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3. Графическая иллюстрация этого примера приведена на рисунке №8.

    К началу страницы

    Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .


    Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b.
  5. Из полученных значений функции выбираем наибольшее и наименьшее — они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке .

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по правилу дифференцирования дроби:

Очевидно, производная функции существует во всех точках отрезков и .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2. Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1, x=2 и x=4:

Следовательно, наибольшее значение функции достигается при x=1, а наименьшее значение – при x=2.

Для второго случая вычисляем значения функции лишь на концах отрезка (так как он не содержит ни одной стационарной точки):

Следовательно, .

Графическая иллюстрация.

К началу страницы

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X.

Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.

  1. Проверяем, является ли интервал X подмножеством области определения функции.

  2. Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.

  3. Определяем все стационарные точки, попадающие в промежуток X. Для этого приравниваем производную функции к нулю, решаем полученное уравнение и выбираем подходящие корни.

    Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.

  4. Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).

    Дальнейшие действия зависят от интервала X.

    Если интервал X имеет вид:

  5. Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2).

  1. Для первого промежутка вычисляем значение функции при x=-4 и предел на минус бесконечности:

    Так как , то , а о наименьшем значении функции выводов сделать нельзя. Можно лишь утверждать, что значения функции ограничены снизу значением -1 (на минус бесконечности значения функции асимптотически приближаются к прямой y=-1).

  2. Второй интервал интересен тем, что не содержит ни одной стационарной точки и ни одна из его границ не является строгой. В этом случае мы не сможем найти ни наибольшего, ни наименьшего значения функции. Вычислив предел на минус бесконечности и при стремлении аргумента к минус трем слева, мы лишь сможем определить интервал значений функции:

    Следовательно, значения функции находятся в интервале при x из промежутка .

  3. Для третьего промежутка (-3;1] вычислим значение функции в стационарной точке и при x=1, а также односторонний предел, при стремлении аргумента к -3 справа:

    Следовательно, наибольшее значение на этом интервале функция принимает в стационарной точке , наименьшее значение функции мы вычислить не можем, но значения функции ограничены снизу величиной -4.

  4. Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:

    Поэтому , наименьшее значение определить нет возможности, значения функции ограничены снизу величиной -4.

  5. Результаты предыдущих двух пунктов позволяют утверждать, что на интервале

    Наибольшее и наименьшее значение функции.

    Графические примеры наибольших и наименьших значений функций на отрезках и интервалах.

    Эта парабола на области определения имеет только наименьшее значение. Наибольшего значения нет, так как её ветви уходят в бесконечность.

    На отрезке есть и наибольшее, и наименьшее значения. В этом примере наименьшее значение достигается во внутренней точке отрезка и совпадает с экстремумом (минимумом) функции, наибольшее — на одном из концов отрезка. В данном случае это y = f(b).

    Функция рассматривается на интервале (a;b). В этом случае краевые точки a и b не входят в область определения функции на оси Ox, и, соответственно, не определены значения функции f(a) и f(b) на оси Oy.

    Наибольшее и наименьшее значение функции на отрезке.

    Однако, можно вычислить сколь угодно близкие к ним значения. Поэтому в этом примере функция имеет наименьшее значение, но не достигает наибольшего, его нет.

    На этом полуинтервале (a;b] есть наибольшее значение приведенной функции, но наименьшего нет.

    Кубическая парабола на области определения имеет два экстремума, но наименьшего и наибольшего значений не достигает: её ветви уходят в бесконечность. E(f) = (−∞; +∞) — область значений кубической параболы.

    Здесь на отрезке наибольшее значение достигается в точке максимума, а наименьшее в краевой точке отрезка.

    Если вместо отрезка рассматриваем интервал (a;b) с теми же концами, то наименьшего значения нет.

    На рисунке представлен участок графика функции y = arctgx. У него есть две горизонтальные асимптоты. Значения функции ограничены числами −π/2 и π/2, но наибольшего и наименьшего значений у этой функции нет, так ветви графика стремятся к своим асимптотам, но не достигают их. E(f) = (−π/2; π/2) — область значений арктангенса.

    Непрерывная функция, заданная на отрезке, всегда имеет наибольшее и наименьшее значения. Но, если функция имеет разрывы, то могут быть различные варианты, как для интервалов, так и для отрезков. Посмотрите на этот график разрывной функции, заданной на отрезке . Здесь функция не имеет наибольшего значения: перед точкой разрыва она возрастает и достигает значений больших, чем в других частях отрезка, но наибольшего не достигает, так как в предполагаемой точке максимума x = 2 она определена другим значением, не у = 2, а y = −1.

     Перейти  на главную страницу сайта.

    Есть вопросы?   пожелания?  замечания?
    Обращайтесь —
      mathematichka@yandex.ru

    Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте ссылки.

    Функции, исследование функций

    Наибольшее и наименьшее значение функции.


    С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования… Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

    Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

    В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x).


    Наибольшее и наименьшее значение функции — определения, иллюстрации.

    Кратко остановимся на основных определениях.

    Наибольшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

    Наименьшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

    Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

    Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

    Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

    Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

    Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

    Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

    На отрезке

    На первом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри отрезка .

    Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее — в точке с абсциссой, соответствующей правой границе интервала.

    На рисунке №3 граничные точки отрезка являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

    На открытом интервале

    На четвертом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри открытого интервала (-6;6).

    Наибольшее и наименьшее значение функции, непрерывной на отрезке

    На интервале , о наибольшем значении никаких выводов сделать нельзя.

    На бесконечности

    В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y) в стационарной точке с абсциссой x=1, а наименьшее значение (min y) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3.

    На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3. Графическая иллюстрация этого примера приведена на рисунке №8.

    К началу страницы

    Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .


    Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b.
  5. Из полученных значений функции выбираем наибольшее и наименьшее — они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке .

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по правилу дифференцирования дроби:

Очевидно, производная функции существует во всех точках отрезков и .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2. Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1, x=2 и x=4:

Следовательно, наибольшее значение функции достигается при x=1, а наименьшее значение – при x=2.

Для второго случая вычисляем значения функции лишь на концах отрезка (так как он не содержит ни одной стационарной точки):

Следовательно, .

Графическая иллюстрация.

К началу страницы

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X.

Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.

  1. Проверяем, является ли интервал X подмножеством области определения функции.

  2. Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.

  3. Определяем все стационарные точки, попадающие в промежуток X. Для этого приравниваем производную функции к нулю, решаем полученное уравнение и выбираем подходящие корни.

    Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.

  4. Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).

    Дальнейшие действия зависят от интервала X.

    Если интервал X имеет вид:

  5. Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2).

  1. Для первого промежутка вычисляем значение функции при x=-4 и предел на минус бесконечности:

    Так как , то , а о наименьшем значении функции выводов сделать нельзя. Можно лишь утверждать, что значения функции ограничены снизу значением -1 (на минус бесконечности значения функции асимптотически приближаются к прямой y=-1).

  2. Второй интервал интересен тем, что не содержит ни одной стационарной точки и ни одна из его границ не является строгой. В этом случае мы не сможем найти ни наибольшего, ни наименьшего значения функции. Вычислив предел на минус бесконечности и при стремлении аргумента к минус трем слева, мы лишь сможем определить интервал значений функции:

    Следовательно, значения функции находятся в интервале при x из промежутка .

  3. Для третьего промежутка (-3;1] вычислим значение функции в стационарной точке и при x=1, а также односторонний предел, при стремлении аргумента к -3 справа:

    Следовательно, наибольшее значение на этом интервале функция принимает в стационарной точке , наименьшее значение функции мы вычислить не можем, но значения функции ограничены снизу величиной -4.

  4. Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:

    Поэтому , наименьшее значение определить нет возможности, значения функции ограничены снизу величиной -4.

  5. Результаты предыдущих двух пунктов позволяют утверждать, что на интервале

    Функции, исследование функций

    Наибольшее и наименьшее значение функции.


    С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования… Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

    Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

    В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x).


    Наибольшее и наименьшее значение функции — определения, иллюстрации.

    Кратко остановимся на основных определениях.

    Наибольшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

    Наименьшим значением функцииy=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

    Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

    Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

    Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

    Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

    Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

    Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

    На отрезке

    На первом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри отрезка .

    Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее — в точке с абсциссой, соответствующей правой границе интервала.

    На рисунке №3 граничные точки отрезка являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

    На открытом интервале

    На четвертом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри открытого интервала (-6;6).

    На интервале , о наибольшем значении никаких выводов сделать нельзя.

    На бесконечности

    В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y) в стационарной точке с абсциссой x=1, а наименьшее значение (min y) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3.

    На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3. Графическая иллюстрация этого примера приведена на рисунке №8.

    К началу страницы

    Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .


    Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b.
  5. Из полученных значений функции выбираем наибольшее и наименьшее — они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке .

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по правилу дифференцирования дроби:

Очевидно, производная функции существует во всех точках отрезков и .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2. Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1, x=2 и x=4:

Следовательно, наибольшее значение функции достигается при x=1, а наименьшее значение – при x=2.

Для второго случая вычисляем значения функции лишь на концах отрезка (так как он не содержит ни одной стационарной точки):

Следовательно, .

Графическая иллюстрация.

К началу страницы

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X.

Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.

  1. Проверяем, является ли интервал X подмножеством области определения функции.

  2. Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.

  3. Определяем все стационарные точки, попадающие в промежуток X. Для этого приравниваем производную функции к нулю, решаем полученное уравнение и выбираем подходящие корни.

    Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.

  4. Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).

    Дальнейшие действия зависят от интервала X.

    Если интервал X имеет вид:

  5. Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий.

Наибольшее и наименьшее значение функции

Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2).

  1. Для первого промежутка вычисляем значение функции при x=-4 и предел на минус бесконечности:

    Так как , то , а о наименьшем значении функции выводов сделать нельзя. Можно лишь утверждать, что значения функции ограничены снизу значением -1 (на минус бесконечности значения функции асимптотически приближаются к прямой y=-1).

  2. Второй интервал интересен тем, что не содержит ни одной стационарной точки и ни одна из его границ не является строгой. В этом случае мы не сможем найти ни наибольшего, ни наименьшего значения функции. Вычислив предел на минус бесконечности и при стремлении аргумента к минус трем слева, мы лишь сможем определить интервал значений функции:

    Следовательно, значения функции находятся в интервале при x из промежутка .

  3. Для третьего промежутка (-3;1] вычислим значение функции в стационарной точке и при x=1, а также односторонний предел, при стремлении аргумента к -3 справа:

    Следовательно, наибольшее значение на этом интервале функция принимает в стационарной точке , наименьшее значение функции мы вычислить не можем, но значения функции ограничены снизу величиной -4.

  4. Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:

    Поэтому , наименьшее значение определить нет возможности, значения функции ограничены снизу величиной -4.

  5. Результаты предыдущих двух пунктов позволяют утверждать, что на интервале

admin