Расстояние между прямыми в пространстве

Расстояние между прямыми в пространстве

Содержание

Прямая, плоскость, их уравнения

Расстояние между скрещивающимися прямыми – определение и примеры нахождения.


В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.


Расстояние между скрещивающимися прямыми – определение.

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

В разделе взаимное расположение прямых в пространстве мы упоминали, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Через каждую из скрещивающихся прямых проходит единственная плоскость, которой параллельна другая прямая.

Пусть даны скрещивающиеся прямые a и b. Докажем, что через прямую b проходит единственная плоскость, параллельная прямой a (абсолютно аналогично можно будет доказать, что через прямую a проходит плоскость, параллельная прямой b, притом только одна). Это будет служить доказательством теоремы.

Отметим на прямой b некоторую точку Q. В статье параллельные прямые, параллельность прямых была доказана теорема, гласящая, что через произвольную точку пространстве проходит единственная прямая, параллельная заданной прямой. Следовательно, через точку Q можно провести единственную прямую, параллельную прямой a. Обозначим ее a1.

В разделе способы задания плоскости мы упоминали, что через две пересекающиеся прямые проходит единственная плоскость (что следует из аксиомы о плоскости, проходящей через три различные точки, не лежащие на одной прямой). Следовательно, через пересекающиеся прямые b и a1 проходит единственная плоскость.

Как найти расстояние между прямыми в пространстве

Обозначим ее .

Признак параллельности прямой и плоскости позволяет утверждать, что прямая a параллельна плоскости (так как прямая a параллельна прямой a1, лежащей в плоскости ).

Единственность плоскости следует из единственности прямой, проходящей через заданную точку пространства параллельно заданной прямой.

Теперь можно переходить непосредственно к определению расстояния между скрещивающимися прямыми. Определение расстояния между скрещивающимися прямыми дается через расстояние между прямой и параллельной ей плоскостью.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Рассмотрим скрещивающиеся прямые a и b. Отметим на прямой a некоторую точку М1, через прямую b проведем плоскость , параллельную прямой a, и из точки М1 опустим перпендикуляр М1H1 на плоскость . Длина перпендикуляра M1H1 есть расстояние между скрещивающимися прямыми a и b.

К началу страницы

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.


При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена прямоугольная система координатOxyz и в ней заданы скрещивающиеся прямые a и b, то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть — плоскость, проходящая через прямую b, параллельно прямой a. Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М1, лежащей на прямой a, до плоскости . Таким образом, если мы определим координаты некоторой точки М1, лежащей на прямой a, и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости). А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Теперь подробно.

Задача сводится к получению координат точки М1, лежащей на прямой a, и к нахождению нормального уравнения плоскости .

С определением координат точки М1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве. А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М2, через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М2 можно взять любую точку, лежащую на прямой b, так как плоскость проходит через прямую b. Таким образом, координаты точки М2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a. Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямойa (обозначим его ), и направляющему вектору прямой b (обозначим его ). Тогда в качестве вектора можно взять векторное произведение векторов и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

Разберем решение примера.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Прямая, плоскость, их уравнения

Расстояние между скрещивающимися прямыми – определение и примеры нахождения.


В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.


Расстояние между скрещивающимися прямыми – определение.

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

В разделе взаимное расположение прямых в пространстве мы упоминали, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Через каждую из скрещивающихся прямых проходит единственная плоскость, которой параллельна другая прямая.

Пусть даны скрещивающиеся прямые a и b. Докажем, что через прямую b проходит единственная плоскость, параллельная прямой a (абсолютно аналогично можно будет доказать, что через прямую a проходит плоскость, параллельная прямой b, притом только одна). Это будет служить доказательством теоремы.

Отметим на прямой b некоторую точку Q. В статье параллельные прямые, параллельность прямых была доказана теорема, гласящая, что через произвольную точку пространстве проходит единственная прямая, параллельная заданной прямой. Следовательно, через точку Q можно провести единственную прямую, параллельную прямой a. Обозначим ее a1.

В разделе способы задания плоскости мы упоминали, что через две пересекающиеся прямые проходит единственная плоскость (что следует из аксиомы о плоскости, проходящей через три различные точки, не лежащие на одной прямой). Следовательно, через пересекающиеся прямые b и a1 проходит единственная плоскость. Обозначим ее .

Признак параллельности прямой и плоскости позволяет утверждать, что прямая a параллельна плоскости (так как прямая a параллельна прямой a1, лежащей в плоскости ).

Единственность плоскости следует из единственности прямой, проходящей через заданную точку пространства параллельно заданной прямой.

Расстояние между скрещивающимися прямыми – определение и примеры нахождения.

Теперь можно переходить непосредственно к определению расстояния между скрещивающимися прямыми. Определение расстояния между скрещивающимися прямыми дается через расстояние между прямой и параллельной ей плоскостью.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Рассмотрим скрещивающиеся прямые a и b. Отметим на прямой a некоторую точку М1, через прямую b проведем плоскость , параллельную прямой a, и из точки М1 опустим перпендикуляр М1H1 на плоскость . Длина перпендикуляра M1H1 есть расстояние между скрещивающимися прямыми a и b.

К началу страницы

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.


При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена прямоугольная система координатOxyz и в ней заданы скрещивающиеся прямые a и b, то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть — плоскость, проходящая через прямую b, параллельно прямой a. Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М1, лежащей на прямой a, до плоскости . Таким образом, если мы определим координаты некоторой точки М1, лежащей на прямой a, и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости). А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Теперь подробно.

Задача сводится к получению координат точки М1, лежащей на прямой a, и к нахождению нормального уравнения плоскости .

С определением координат точки М1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве. А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М2, через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М2 можно взять любую точку, лежащую на прямой b, так как плоскость проходит через прямую b. Таким образом, координаты точки М2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a. Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямойa (обозначим его ), и направляющему вектору прямой b (обозначим его ). Тогда в качестве вектора можно взять векторное произведение векторов и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

Разберем решение примера.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Прямая, плоскость, их уравнения

Расстояние между скрещивающимися прямыми – определение и примеры нахождения.


В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.


Расстояние между скрещивающимися прямыми – определение.

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

В разделе взаимное расположение прямых в пространстве мы упоминали, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Через каждую из скрещивающихся прямых проходит единственная плоскость, которой параллельна другая прямая.

Пусть даны скрещивающиеся прямые a и b. Докажем, что через прямую b проходит единственная плоскость, параллельная прямой a (абсолютно аналогично можно будет доказать, что через прямую a проходит плоскость, параллельная прямой b, притом только одна). Это будет служить доказательством теоремы.

Отметим на прямой b некоторую точку Q. В статье параллельные прямые, параллельность прямых была доказана теорема, гласящая, что через произвольную точку пространстве проходит единственная прямая, параллельная заданной прямой. Следовательно, через точку Q можно провести единственную прямую, параллельную прямой a. Обозначим ее a1.

В разделе способы задания плоскости мы упоминали, что через две пересекающиеся прямые проходит единственная плоскость (что следует из аксиомы о плоскости, проходящей через три различные точки, не лежащие на одной прямой). Следовательно, через пересекающиеся прямые b и a1 проходит единственная плоскость. Обозначим ее .

Признак параллельности прямой и плоскости позволяет утверждать, что прямая a параллельна плоскости (так как прямая a параллельна прямой a1, лежащей в плоскости ).

Единственность плоскости следует из единственности прямой, проходящей через заданную точку пространства параллельно заданной прямой.

Теперь можно переходить непосредственно к определению расстояния между скрещивающимися прямыми. Определение расстояния между скрещивающимися прямыми дается через расстояние между прямой и параллельной ей плоскостью.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Рассмотрим скрещивающиеся прямые a и b. Отметим на прямой a некоторую точку М1, через прямую b проведем плоскость , параллельную прямой a, и из точки М1 опустим перпендикуляр М1H1 на плоскость . Длина перпендикуляра M1H1 есть расстояние между скрещивающимися прямыми a и b.

К началу страницы

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.


При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена прямоугольная система координатOxyz и в ней заданы скрещивающиеся прямые a и b, то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть — плоскость, проходящая через прямую b, параллельно прямой a.

Расстояние между двумя параллельными прямыми: определение и примеры нахождения

Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М1, лежащей на прямой a, до плоскости . Таким образом, если мы определим координаты некоторой точки М1, лежащей на прямой a, и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости). А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Теперь подробно.

Задача сводится к получению координат точки М1, лежащей на прямой a, и к нахождению нормального уравнения плоскости .

С определением координат точки М1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве. А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М2, через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М2 можно взять любую точку, лежащую на прямой b, так как плоскость проходит через прямую b. Таким образом, координаты точки М2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a. Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямойa (обозначим его ), и направляющему вектору прямой b (обозначим его ). Тогда в качестве вектора можно взять векторное произведение векторов и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

Разберем решение примера.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Расстояние между двумя параллельными прямыми

Расстояние между двумя параллельными прямыми, определяется величиной перпендикуляра, опущенного из точки, взятой на одной прямой, на другую прямую.

Расстояние между двумя параллельными прямыми

На основе данного определения составляем алгоритм решения задачи в общем виде:
— берем произвольную точку N на одной прямой;
— из точки N опускаем перпендикуляр на на другую прямую:
— через точку N проводим плоскость α перпендикулярную параллельным прямым n и m.
— находим точку встречи M прямой m с плоскостью α;
— соединяем точки N и M отрезком прямой;
— определяем действительную величину отрезка способом прямоугольного треугольника.

Решение задачи на расстояние между двумя параллельными прямыми способом плоскопараллельного перемещения:

Расстояние между двумя параллельными прямыми

— первым шагом прямые переводятся в частное положение — положение фронтальных прямых, при этом перемещении d1 = const, (m` ║ n`) ║ оси x;
— вторым шагом прямые переводятся в частное положение — положение горизонтально-проецирующих прямых, при этом перемещении d2 = const, (m" ║ n") ⊥ оси x;
— проекциями горизонтально-проецирующих прямых n"2 и m"2 будут точки N`2 и M`2, соединив которые прямой линией получим отрезок — соответствующий действительной величине расстояния между двумя параллельными прямыми m и n.
Обратным проецированием точки N и M могут быть построены на исходных проекциях.

+

Прямая, плоскость, их уравнения

Расстояние между скрещивающимися прямыми – определение и примеры нахождения.


В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.


Расстояние между скрещивающимися прямыми – определение.

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

В разделе взаимное расположение прямых в пространстве мы упоминали, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Через каждую из скрещивающихся прямых проходит единственная плоскость, которой параллельна другая прямая.

Пусть даны скрещивающиеся прямые a и b. Докажем, что через прямую b проходит единственная плоскость, параллельная прямой a (абсолютно аналогично можно будет доказать, что через прямую a проходит плоскость, параллельная прямой b, притом только одна). Это будет служить доказательством теоремы.

Отметим на прямой b некоторую точку Q.

Расстояние между двумя скрещивающимися прямыми

В статье параллельные прямые, параллельность прямых была доказана теорема, гласящая, что через произвольную точку пространстве проходит единственная прямая, параллельная заданной прямой. Следовательно, через точку Q можно провести единственную прямую, параллельную прямой a. Обозначим ее a1.

В разделе способы задания плоскости мы упоминали, что через две пересекающиеся прямые проходит единственная плоскость (что следует из аксиомы о плоскости, проходящей через три различные точки, не лежащие на одной прямой). Следовательно, через пересекающиеся прямые b и a1 проходит единственная плоскость. Обозначим ее .

Признак параллельности прямой и плоскости позволяет утверждать, что прямая a параллельна плоскости (так как прямая a параллельна прямой a1, лежащей в плоскости ).

Единственность плоскости следует из единственности прямой, проходящей через заданную точку пространства параллельно заданной прямой.

Теперь можно переходить непосредственно к определению расстояния между скрещивающимися прямыми. Определение расстояния между скрещивающимися прямыми дается через расстояние между прямой и параллельной ей плоскостью.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Рассмотрим скрещивающиеся прямые a и b. Отметим на прямой a некоторую точку М1, через прямую b проведем плоскость , параллельную прямой a, и из точки М1 опустим перпендикуляр М1H1 на плоскость . Длина перпендикуляра M1H1 есть расстояние между скрещивающимися прямыми a и b.

К началу страницы

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.


При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена прямоугольная система координатOxyz и в ней заданы скрещивающиеся прямые a и b, то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть — плоскость, проходящая через прямую b, параллельно прямой a. Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М1, лежащей на прямой a, до плоскости . Таким образом, если мы определим координаты некоторой точки М1, лежащей на прямой a, и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости). А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Теперь подробно.

Задача сводится к получению координат точки М1, лежащей на прямой a, и к нахождению нормального уравнения плоскости .

С определением координат точки М1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве. А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М2, через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М2 можно взять любую точку, лежащую на прямой b, так как плоскость проходит через прямую b. Таким образом, координаты точки М2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a. Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямойa (обозначим его ), и направляющему вектору прямой b (обозначим его ). Тогда в качестве вектора можно взять векторное произведение векторов и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

Разберем решение примера.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Прямая, плоскость, их уравнения

Расстояние между скрещивающимися прямыми – определение и примеры нахождения.


В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.


Расстояние между скрещивающимися прямыми – определение.

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

В разделе взаимное расположение прямых в пространстве мы упоминали, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Через каждую из скрещивающихся прямых проходит единственная плоскость, которой параллельна другая прямая.

Пусть даны скрещивающиеся прямые a и b. Докажем, что через прямую b проходит единственная плоскость, параллельная прямой a (абсолютно аналогично можно будет доказать, что через прямую a проходит плоскость, параллельная прямой b, притом только одна). Это будет служить доказательством теоремы.

Отметим на прямой b некоторую точку Q. В статье параллельные прямые, параллельность прямых была доказана теорема, гласящая, что через произвольную точку пространстве проходит единственная прямая, параллельная заданной прямой. Следовательно, через точку Q можно провести единственную прямую, параллельную прямой a. Обозначим ее a1.

В разделе способы задания плоскости мы упоминали, что через две пересекающиеся прямые проходит единственная плоскость (что следует из аксиомы о плоскости, проходящей через три различные точки, не лежащие на одной прямой). Следовательно, через пересекающиеся прямые b и a1 проходит единственная плоскость. Обозначим ее .

Признак параллельности прямой и плоскости позволяет утверждать, что прямая a параллельна плоскости (так как прямая a параллельна прямой a1, лежащей в плоскости ).

Единственность плоскости следует из единственности прямой, проходящей через заданную точку пространства параллельно заданной прямой.

Теперь можно переходить непосредственно к определению расстояния между скрещивающимися прямыми. Определение расстояния между скрещивающимися прямыми дается через расстояние между прямой и параллельной ей плоскостью.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Рассмотрим скрещивающиеся прямые a и b. Отметим на прямой a некоторую точку М1, через прямую b проведем плоскость , параллельную прямой a, и из точки М1 опустим перпендикуляр М1H1 на плоскость . Длина перпендикуляра M1H1 есть расстояние между скрещивающимися прямыми a и b.

К началу страницы

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.


При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена прямоугольная система координатOxyz и в ней заданы скрещивающиеся прямые a и b, то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть — плоскость, проходящая через прямую b, параллельно прямой a. Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М1, лежащей на прямой a, до плоскости .

Расстояние между прямыми в пространстве

Таким образом, если мы определим координаты некоторой точки М1, лежащей на прямой a, и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости). А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Теперь подробно.

Задача сводится к получению координат точки М1, лежащей на прямой a, и к нахождению нормального уравнения плоскости .

С определением координат точки М1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве. А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М2, через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М2 можно взять любую точку, лежащую на прямой b, так как плоскость проходит через прямую b. Таким образом, координаты точки М2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a. Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямойa (обозначим его ), и направляющему вектору прямой b (обозначим его ). Тогда в качестве вектора можно взять векторное произведение векторов и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

Разберем решение примера.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.
admin