Жесткость в чем измеряется

Жесткость в чем измеряется

Содержание

Жесткость пружины

При воздействии внешних сил тела способны приобретать ускорения или деформироваться. Деформацией называют изменение размеров и (или) формы тела. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Пусть на пружину на рис.1 действует растягивающая сила, направленная вертикально вниз.

При воздействии деформирующей силы ($\overline{F}$) длина пружины увеличивается.

Совет 1: Как определить коэффициент жесткости

В пружине возникает сила упругости (${\overline{F}}_u$), которая уравновешивает деформирующую силу. Если деформация небольшая и упругая, то удлинение пружины ($\Delta l$) пропорционально деформирующей силе:

\

где в качестве коэффициента пропорциональности выступает жесткость пружины $k$. Коэффициент $k$ называют также коэффициентом упругости, коэффициентом жесткости. Жесткость (как свойство) характеризует упругие свойства тела, подвергаемого деформации — это возможность тела оказывать противодействие внешней силе, сохранять свои геометрические параметры. Коэффициент жесткости является основной характеристикой жесткости.

Коэффициент жесткости пружины зависит от материала, из которого изготовлена пружина, ее геометрических характеристик. Так, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси вычисляется при помощи формулы:

\

где $G$ -модуль сдвига (величина зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицы измерения жесткости пружины

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\=\left=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Жесткость соединений пружин

При последовательном соединении $N$ пружин жесткость соединения вычисляется при помощи формулы:

\

Если пружины соединены параллельно, то результирующая жесткость равна:

\

Примеры задач на жесткость пружин

Пример 1

Задание. Какова потенциальная энергия ($E_p$) деформации системы из двух параллельно соединенных пружин (рис.2), если их жесткости равны: $k_1=1000\ \frac{Н}{м}$; $k_2=4000\ \frac{Н}{м}$, а удлинение составляет $\Delta l=0,01$ м.

Решение. При параллельном соединении пружин жесткость системы вычислим как:

\

Потенциальную энергию деформированной системы вычислим при помощи формулы:

\

Вычислим искомую потенциальную энергию:

\

Ответ. $E_p=0,\ 25$ Дж

Пример 2

Задание. Чему равна работа ($A$) силы растягивающей систему из двух последовательно соединенных пружин, имеющих жесткости $k_1=1000\ \frac{Н}{м}\ \ и$ $k_2=2000\ \frac{Н}{м}$, если удлинение второй пружины составляет $\Delta l_2=0,\ 1\ м$?

Решение. Сделаем рисунок.

При последовательном соединении пружин на каждую из них действует одна и та же деформирующая сила ($\overline{F}$), используя этот факт и закон Гука найдем удлинение первой пружины:

\

Работа силы упругости при растяжении первой пружины, равна:

\

Учитывая полученное в (2.1) удлинение первой пружины имеем:

\

Работа второй силы упругости:

\

Работа силы, которая растягивает систему пружин в целом, будет найдена как:

\

Подставим правые части выражений (2.3) и (2.4) в формулу (2.5), получаем:

\

Вычислим работу:

\

Ответ. $А$=30 Дж

Читать дальше: затухающие колебания.

       Одностороннее (или продольное) растяжение (сжатие) стержня состоит в увеличении (уменьшении) длины стержня под действием внешней силы    (рис. 4.3).

       Такая деформация приводит к возникновению в стержне упругих сил, которые принято характеризовать напряжением  σ:

где – площадь поперечного сечения стержня,  d – его диаметр.


Рис.

Коэффициент упругости

4.3

       В случае растяжения  σ  считается положительной, а в случае сжатия – отрицательной. Опыт показывает, что приращение длины стержня  Δl  пропорционально напряжению  σ:        Коэффициент пропорциональности  k, как и в случае пружины, зависит от свойств материала и длины стержня.
       Доказано, что , где  Е  – величина, характеризующая упругие свойства материала стержня, – модуль Юнга (см. приложение 2).  Е измеряется в Н/м2 или в Па.

       Тогда приращение длины можно выразить через модуль Юнга:

или, обозначив – относительное продольное растяжение (сжатие), получим:

  (4.3.2)  

       Закон Гука для стержня: относительное приращение длины стержня прямо пропорционально напряжению и обратно пропорционально модулю Юнга.

       Заметим, что растяжение или сжатие стержней сопровождается соответствующим изменением их поперечных размеров  d0  и  d  (рис. 4.3).

       Относительное поперечное растяжение (сжатие):
       Отношение относительного поперечного растяжения стержня к относительному продольному растяжению , называют коэффициентом Пуассона (см. приложение 2):

  (4.3.3)  

       Объемная плотность потенциальной энергии тела  ωσ  при растяжении (сжатии) определяется удельной работой по преодолению упругих сил  Aупр, рассчитанной на единицу объема тела:

  (4.3.4)  

Жесткость пружины

При воздействии внешних сил тела способны приобретать ускорения или деформироваться. Деформацией называют изменение размеров и (или) формы тела. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Пусть на пружину на рис.1 действует растягивающая сила, направленная вертикально вниз.

При воздействии деформирующей силы ($\overline{F}$) длина пружины увеличивается. В пружине возникает сила упругости (${\overline{F}}_u$), которая уравновешивает деформирующую силу. Если деформация небольшая и упругая, то удлинение пружины ($\Delta l$) пропорционально деформирующей силе:

\

где в качестве коэффициента пропорциональности выступает жесткость пружины $k$.

Коэффициент жесткости пружины

Коэффициент $k$ называют также коэффициентом упругости, коэффициентом жесткости. Жесткость (как свойство) характеризует упругие свойства тела, подвергаемого деформации — это возможность тела оказывать противодействие внешней силе, сохранять свои геометрические параметры. Коэффициент жесткости является основной характеристикой жесткости.

Коэффициент жесткости пружины зависит от материала, из которого изготовлена пружина, ее геометрических характеристик. Так, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси вычисляется при помощи формулы:

\

где $G$ -модуль сдвига (величина зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицы измерения жесткости пружины

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\=\left=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Жесткость соединений пружин

При последовательном соединении $N$ пружин жесткость соединения вычисляется при помощи формулы:

\

Если пружины соединены параллельно, то результирующая жесткость равна:

\

Примеры задач на жесткость пружин

Пример 1

Задание. Какова потенциальная энергия ($E_p$) деформации системы из двух параллельно соединенных пружин (рис.2), если их жесткости равны: $k_1=1000\ \frac{Н}{м}$; $k_2=4000\ \frac{Н}{м}$, а удлинение составляет $\Delta l=0,01$ м.

Решение. При параллельном соединении пружин жесткость системы вычислим как:

\

Потенциальную энергию деформированной системы вычислим при помощи формулы:

\

Вычислим искомую потенциальную энергию:

\

Ответ. $E_p=0,\ 25$ Дж

Пример 2

Задание. Чему равна работа ($A$) силы растягивающей систему из двух последовательно соединенных пружин, имеющих жесткости $k_1=1000\ \frac{Н}{м}\ \ и$ $k_2=2000\ \frac{Н}{м}$, если удлинение второй пружины составляет $\Delta l_2=0,\ 1\ м$?

Решение. Сделаем рисунок.

При последовательном соединении пружин на каждую из них действует одна и та же деформирующая сила ($\overline{F}$), используя этот факт и закон Гука найдем удлинение первой пружины:

\

Работа силы упругости при растяжении первой пружины, равна:

\

Учитывая полученное в (2.1) удлинение первой пружины имеем:

\

Работа второй силы упругости:

\

Работа силы, которая растягивает систему пружин в целом, будет найдена как:

\

Подставим правые части выражений (2.3) и (2.4) в формулу (2.5), получаем:

\

Вычислим работу:

\

Ответ. $А$=30 Дж

Читать дальше: затухающие колебания.

Жесткость пружин

Формула жесткости пружины

Определение и формула жесткости пружины

Определение

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости.

Чаще всего ее обозначают ${\overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($\overline{F}$), которая направлена вертикально вниз (рис.1).

Силу $\overline{F\ }$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${\overline{F}}_u$), уравновешивающая силу $\overline{F\ }$. Если деформация является небольшой и упругой, то удлинение пружины ($\Delta l$) прямо пропорционально деформирующей силе:

\

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости — это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

\

где $G$ — модуль сдвига (величина, зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\=\left=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

\

где $k_i$ — жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

\

Примеры задач с решением

Пример 1

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $\frac{Н}{м}.\ $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

\

При упругих деформациях выполняется закон Гука:

\

Из (1.2) найдем удлинение пружины:

\

Длина растянутой пружины равна:

\

Вычислим новую длину пружины:

\

Ответ. 1) $k’=10\ \frac{Н}{м}$; 2) $l’=0,21$ м

Пример 2

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $\Delta l_2$?

Решение. Если пружины соединены последовательно, то деформирующая сила ($\overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

\

Для второй пружины запишем:

\

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

\

Из равенства (2.3) получим удлинение первой пружины:

\

Ответ. $\Delta l_1=\frac{k_2\Delta l_2}{k_1}$

Читать дальше: формула закона Архимеда.

Формула жесткости пружины

Определение и формула жесткости пружины

Определение

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости.

Чаще всего ее обозначают ${\overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($\overline{F}$), которая направлена вертикально вниз (рис.1).

Силу $\overline{F\ }$ назовем деформирующей силой.

Жесткость пружины

От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${\overline{F}}_u$), уравновешивающая силу $\overline{F\ }$. Если деформация является небольшой и упругой, то удлинение пружины ($\Delta l$) прямо пропорционально деформирующей силе:

\

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости — это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

\

где $G$ — модуль сдвига (величина, зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\=\left=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

\

где $k_i$ — жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

\

Примеры задач с решением

Пример 1

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $\frac{Н}{м}.\ $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

\

При упругих деформациях выполняется закон Гука:

\

Из (1.2) найдем удлинение пружины:

\

Длина растянутой пружины равна:

\

Вычислим новую длину пружины:

\

Ответ. 1) $k’=10\ \frac{Н}{м}$; 2) $l’=0,21$ м

Пример 2

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $\Delta l_2$?

Решение. Если пружины соединены последовательно, то деформирующая сила ($\overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

\

Для второй пружины запишем:

\

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

\

Из равенства (2.3) получим удлинение первой пружины:

\

Ответ. $\Delta l_1=\frac{k_2\Delta l_2}{k_1}$

Читать дальше: формула закона Архимеда.

Жесткость пружины

При воздействии внешних сил тела способны приобретать ускорения или деформироваться.

Чему равен коэффициент жесткости пружины, если груз массой 100 г растягивает ее на 1 см?

Деформацией называют изменение размеров и (или) формы тела. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Пусть на пружину на рис.1 действует растягивающая сила, направленная вертикально вниз.

При воздействии деформирующей силы ($\overline{F}$) длина пружины увеличивается. В пружине возникает сила упругости (${\overline{F}}_u$), которая уравновешивает деформирующую силу. Если деформация небольшая и упругая, то удлинение пружины ($\Delta l$) пропорционально деформирующей силе:

\

где в качестве коэффициента пропорциональности выступает жесткость пружины $k$. Коэффициент $k$ называют также коэффициентом упругости, коэффициентом жесткости. Жесткость (как свойство) характеризует упругие свойства тела, подвергаемого деформации — это возможность тела оказывать противодействие внешней силе, сохранять свои геометрические параметры. Коэффициент жесткости является основной характеристикой жесткости.

Коэффициент жесткости пружины зависит от материала, из которого изготовлена пружина, ее геометрических характеристик. Так, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси вычисляется при помощи формулы:

\

где $G$ -модуль сдвига (величина зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицы измерения жесткости пружины

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\=\left=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Жесткость соединений пружин

При последовательном соединении $N$ пружин жесткость соединения вычисляется при помощи формулы:

\

Если пружины соединены параллельно, то результирующая жесткость равна:

\

Примеры задач на жесткость пружин

Пример 1

Задание. Какова потенциальная энергия ($E_p$) деформации системы из двух параллельно соединенных пружин (рис.2), если их жесткости равны: $k_1=1000\ \frac{Н}{м}$; $k_2=4000\ \frac{Н}{м}$, а удлинение составляет $\Delta l=0,01$ м.

Решение. При параллельном соединении пружин жесткость системы вычислим как:

\

Потенциальную энергию деформированной системы вычислим при помощи формулы:

\

Вычислим искомую потенциальную энергию:

\

Ответ. $E_p=0,\ 25$ Дж

Пример 2

Задание. Чему равна работа ($A$) силы растягивающей систему из двух последовательно соединенных пружин, имеющих жесткости $k_1=1000\ \frac{Н}{м}\ \ и$ $k_2=2000\ \frac{Н}{м}$, если удлинение второй пружины составляет $\Delta l_2=0,\ 1\ м$?

Решение. Сделаем рисунок.

При последовательном соединении пружин на каждую из них действует одна и та же деформирующая сила ($\overline{F}$), используя этот факт и закон Гука найдем удлинение первой пружины:

\

Работа силы упругости при растяжении первой пружины, равна:

\

Учитывая полученное в (2.1) удлинение первой пружины имеем:

\

Работа второй силы упругости:

\

Работа силы, которая растягивает систему пружин в целом, будет найдена как:

\

Подставим правые части выражений (2.3) и (2.4) в формулу (2.5), получаем:

\

Вычислим работу:

\

Ответ. $А$=30 Дж

Читать дальше: затухающие колебания.

admin